京公网安备 11010802034615号
经营许可证编号:京B2-20210330
酒店营销:多图解析大数据时代行动与策略_数据分析师考试
大数据有助于为住宿业打造忠诚度和提高转换率,但也带来挑战。数据库通常分散在酒店品牌的不同部门,利用客户信息的关键是把这些数据整合在一起,以及从大数据中发现价值。
酒店业数据利用现状
长期以来,很多数据存在于酒店基础设施中却得不到很好地分享对比、可视化分析从而未采取行动、调整其系统。酒店业已经部分企业开了有意识的学习,并保持在行业前列。当然营销成本和回报需要考虑,数据驱动的优势也很重要。
拥有大量数据是好事,但关键是解决好如何利用数字信息流,更好地发现、追踪并维持忠诚度和回头客。数据显示,如果能利用好客户信息,那么客户获取成本可以降低21%,而酒店和汽车转化率能提高17%。
旅游与数据:平台、数据库、旅程
根据酒店从不同途径收集的各种数据,价值挖掘的关键在于连接不同信息使其可视化、可分析、可应用。价值在于赢得回头客。根据今年全球酒店行业营收统计,酒店行业略显波动,2008年全球酒店营收达4470亿美元,2009年降至3950亿美元,2010年为4190亿美元,2011年为457亿美元,预计2016年将突破达到5500亿美元。
提升酒店宾客关系:数据连接的价值和潜力
大数据对酒店方有益的关键领域在于识别并获取目标顾客类型。借助客人入住数据、分类数据、预订数据、网站活动日志、营销历史,酒店可以通过多种途径研究客人。此外,集中处理的数据允许酒店更好地向高端客人营销。
根据Expedia一份2014年的数据显示,商旅客人在旅行中带有一部以上移动设备的比例达97%;休闲游客旅行中带有一部以上手机者比例高达94%;成年人使用智能手机/平板预定酒店客房比例达28%。
数据转为行动:四步曲
1. 数据:第一步是连接所有的数据,将它们从不同品牌系统整合到单一存储库。集中化数据将其变为可搜索的数据,有助于产生先前未识别的行为模式。
2. 分析:有了新的数据存储库,酒店需要能够解读分析并提取细节的工具,也就是能够借助信息推动计划的软件。
3. 培训/雇员:基于大数据认识并创造结果,需要酒店领导制定黑箱(Black Box)以外的方法。进行分析时,正确的工具包和正确的思维都不可或缺。品牌需要专业人士明晰如何处理数据以及怎样从数据模型中获取可视化、可行性的步骤,不论这些专业人士已经在管理品牌或是受聘与系统来培训和扩大现有员工。
4. 追踪指标:确保四部曲成功的一个重要因素是巩固维系期望结果的做法。商业与技术领导需要追踪数据驱动行为的指标和测度。持续追踪允许战略并不断微调。
一个重要的根本是通过整合不同数据,利用工具进行分析,并提升到专业层面,酒店逐渐改变。这不是一个有限的项目而是需要持续努力。随着酒店认同这一概念,未来战略正准备进一步发展品牌宾客关系。
未来酒店:借力工具,扩大宣传
当酒店品牌数据能对接另外数据时,转换的可能性会进一步扩大。例如,一个酒店品牌如果能够与航班分享数据,通过品牌间互动,可以了解用户在飞机上和酒店里的行为表现和花费情况。
如互联网营销公司Cendyn/One与Andara酒店和度假村联手进行了基于数据的营销活动,在人口统计学、行为数据、地点、基于意愿的信息基础上,针对30岁以上年收入20万美元以上的家庭进行精准营销,收效明显。其提高消费者通过预订引擎的比例达275%,产生营收提升121%,在广告花费上提升31%,转换率提高34%。
品牌数据与其他数据相对接,这种前瞻性尝试让大数据最终有效作用于旅游品牌,开启了一片新天地。如果客户数据能成为行业范围汇集的、更加一般性的基础信息,那么这将成为竞争的一个转折点。品牌和营销人员会更加密切地关注个性化拓展。
思考与策略
• 寻找高端细分作为专有数据集。了解酒店品牌前25名(或前250,前2500)客人的行为和偏好,向这些人提供个性化服务营销和CRM宣传。
• 将其他客人在操作层面上进行分类。酒店品牌可以进一步依据花费、频次、辅助习性、忠诚度和喜好等因素,对其他客人归类,然后据此对细分市场进行宣传。
• 进行数据分析以追求品牌的“最佳客户”。酒店品牌能够建立最佳客户模型,能基于任何数量的标准和目标,深挖第三方数据,以发现匹配模型的客人概况。因此,营销更加智能,能够接触更好的潜在顾客,转换率也持续增加。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14