京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代浪潮至 信息安全不再是说说而已_数据分析师考试
近几年,有关网络威胁导致服务器宕机、个人及企业信息泄露事件频繁发生,网络信息安全问题也成了全球性关注热点。有专家分析,随着大数据时代的到来,解决网络安全问题变得越来越难,传统防御威胁的手段已逐渐失效。那么,在如此背景下,传统安全厂商是否该改变策略,涌向大数据时代的浪潮中呢?在2015年互联网大会现场,360公司总裁齐向东在接受采访时详解“互联网+安全”带来的新机遇。
大数据时代到来 网络威胁升级
因大数据本身固有的特征——Volume(数据体量巨大)、Variety(数据类型繁多)、Value(价值密度低)、Velocity(处理速度快),大数据时代也被称作“大泄密”时代。据PWC(普华永道)发布的2015年全球信息安全状态调查报告指出,2014年全球所有行业检测到的网络攻击共有4280万次,比去年增长了48%。此前诸多网络安全故障的发生,都表明大数据时代的安全问题日渐恶化,而企业在大数据应用前首先要考虑的就是数据安全威胁。
在谈到互联网安全的演变史时,齐向东认为,以前的互联网安全,企业面临的只是操作系统的安全问题,用软件就能够解决。但是进入万物互联的时代以后,包括智能摄像机、路由器、汽车,甚至随身穿戴、智能医疗设备等,都趋于智能化、网络化,解决这些智能硬件的安全问题,是无法用上网安全的解决方案完成的。
在接受采访时,齐向东透露了一组数据:“2011年到2014年,国内互联网公开的安全事故已经造成了累计11.3亿用户的信息泄露。95%的网站能够被黑,40%网站存在后门,70%网站存在漏洞。”可见除了漏洞,网络攻击方式和来源也日趋多样化。
据360天眼实验室研究发现,APT(可持续性高强度攻击)攻击已覆盖着多个省市,均是涉及针对政府、科技、教育、等多个领域的定向攻击,60%的案例里,攻击者几分钟就可攻击得手,70%-90%的恶意样本都是有针对性的,75%的攻击会在一天内从一个受害者快速的扩散到其他受害者。
传统安全产业或将转型 拥抱大数据
前不久,美国网安市场调查公司Cybersecurity Ventures发布的《网络空间安全企业500强》榜单,许多新兴网络安全厂商名列前茅,而一些老牌安全厂商的排名相对靠后。事实上,对网络安全行业而言,传统意义上以企业规模、产品线和服务完备程度进行企业排名的评判标准正在转化为应对网络空间威胁的能力和潜力。
当前新兴的威胁贯穿了整个虚拟世界和实体世界,网络安全解决方案不再只是简单的产品堆砌,而是厂商敏锐度和反应的比拼。在这样一个新的形势下,以营业额、产品数量为标准,已不足以体现一个厂商的能力水平。
资深网络安全专家认为,对于互联网而言,传统安全设备,要从本地网络或者终端数据中发现未知威胁,就像要在森林中找出一片指定的叶子,效率很低。只有从数据、技术、人员等多个方面拥抱大数据技术,才能真正的有效、快速的发现未知威胁。
云安全服务 取之于民用之于民
作为一个颠覆式的技术,云安全的出现,拯救了整个互联网。云安全体系是以软件客户端收集用户电脑上的可疑样本,上报到云端分析,然后将结果形成特征库再下放到客户端的一个基于个人PC与云端PC的闭合的样本收集和分析体系,取之于民用之于民。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07