
大数据时代浪潮至 信息安全不再是说说而已_数据分析师考试
近几年,有关网络威胁导致服务器宕机、个人及企业信息泄露事件频繁发生,网络信息安全问题也成了全球性关注热点。有专家分析,随着大数据时代的到来,解决网络安全问题变得越来越难,传统防御威胁的手段已逐渐失效。那么,在如此背景下,传统安全厂商是否该改变策略,涌向大数据时代的浪潮中呢?在2015年互联网大会现场,360公司总裁齐向东在接受采访时详解“互联网+安全”带来的新机遇。
大数据时代到来 网络威胁升级
因大数据本身固有的特征——Volume(数据体量巨大)、Variety(数据类型繁多)、Value(价值密度低)、Velocity(处理速度快),大数据时代也被称作“大泄密”时代。据PWC(普华永道)发布的2015年全球信息安全状态调查报告指出,2014年全球所有行业检测到的网络攻击共有4280万次,比去年增长了48%。此前诸多网络安全故障的发生,都表明大数据时代的安全问题日渐恶化,而企业在大数据应用前首先要考虑的就是数据安全威胁。
在谈到互联网安全的演变史时,齐向东认为,以前的互联网安全,企业面临的只是操作系统的安全问题,用软件就能够解决。但是进入万物互联的时代以后,包括智能摄像机、路由器、汽车,甚至随身穿戴、智能医疗设备等,都趋于智能化、网络化,解决这些智能硬件的安全问题,是无法用上网安全的解决方案完成的。
在接受采访时,齐向东透露了一组数据:“2011年到2014年,国内互联网公开的安全事故已经造成了累计11.3亿用户的信息泄露。95%的网站能够被黑,40%网站存在后门,70%网站存在漏洞。”可见除了漏洞,网络攻击方式和来源也日趋多样化。
据360天眼实验室研究发现,APT(可持续性高强度攻击)攻击已覆盖着多个省市,均是涉及针对政府、科技、教育、等多个领域的定向攻击,60%的案例里,攻击者几分钟就可攻击得手,70%-90%的恶意样本都是有针对性的,75%的攻击会在一天内从一个受害者快速的扩散到其他受害者。
传统安全产业或将转型 拥抱大数据
前不久,美国网安市场调查公司Cybersecurity Ventures发布的《网络空间安全企业500强》榜单,许多新兴网络安全厂商名列前茅,而一些老牌安全厂商的排名相对靠后。事实上,对网络安全行业而言,传统意义上以企业规模、产品线和服务完备程度进行企业排名的评判标准正在转化为应对网络空间威胁的能力和潜力。
当前新兴的威胁贯穿了整个虚拟世界和实体世界,网络安全解决方案不再只是简单的产品堆砌,而是厂商敏锐度和反应的比拼。在这样一个新的形势下,以营业额、产品数量为标准,已不足以体现一个厂商的能力水平。
资深网络安全专家认为,对于互联网而言,传统安全设备,要从本地网络或者终端数据中发现未知威胁,就像要在森林中找出一片指定的叶子,效率很低。只有从数据、技术、人员等多个方面拥抱大数据技术,才能真正的有效、快速的发现未知威胁。
云安全服务 取之于民用之于民
作为一个颠覆式的技术,云安全的出现,拯救了整个互联网。云安全体系是以软件客户端收集用户电脑上的可疑样本,上报到云端分析,然后将结果形成特征库再下放到客户端的一个基于个人PC与云端PC的闭合的样本收集和分析体系,取之于民用之于民。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19