
大数据产业发展需“接地气”_数据分析师考试
“大数据成为了网络时代人类社会的重要资产。”“大数据时代,一切都靠数据说话。”……7月21日,由中国人工智能学会、国际粗糙集学会主办的2015年大数据价值实现之路高峰论坛在重庆邮电大学拉开帷幕,来自国内外计算机科学与技术领域的专家学者与我市高校师生、科研院所研究人员共同探讨了云计算和大数据产业的前沿成果和发展趋势,并为重庆大数据产业的发展建言献策。
大数据聚类会成为很多行业的核心竞争力所在
“大数据本身既不是科学,也不是技术,它反映的是网络时代的一种客观存在。”中国工程院院士、中国人工智能学会理事长李德毅这样认为。
在他看来,随着信息技术,尤其是传感器、通信、计算机和互联网技术的迅猛发展和广泛应用,人类获取数据的手段越来越多,速度大大加快,成本急剧降低,层次和尺度更为精细,人联网和物联网又使得人人物物都成为数据源,这样一来,大数据成为了网络时代人类社会的重要资产。
既然是一种资产,那么人类如何来利用,实现大数据的价值?
“要做到大数据价值实现,首先要做到价值发现,也就是说,只有你把大数据的价值发掘出来,才能懂得如何利用大数据的价值。”他说。
不过,人类社会文明进入到数据密集型的新时代,并且数据正在以指数级的规模快速增长,这也给人们认知大数据造成了很大困扰。
李德毅表示,大数据认知的突破口在聚类,聚类是发掘大数据价值的第一步,也就是在相似的基础上收集数据来分类。
以汽车保险为例,在物联网时代,当汽车成为大数据发生器以后,每一次驾驶、行程、维修甚至每一次踩刹车,都会被记录在案。利用大数据聚类分析,一家保险公司就可以对一个车况好、驾驶习惯好、常走线路事故率低、不勤开车的特定客户给予更大的优惠,而对风险太高的客户报高价甚至拒绝等。利用大数据聚类分析为客户提供个性化方案,将颠覆保险公司传统的商业模式。
由此可以看出,聚类让大数据价值得以发现,进而让大数据价值得以实现。大数据聚类会成为很多行业的核心竞争力所在。
机器人既使用大数据也产生大数据
导航机器人、路口机器人交警、无人驾驶汽车……这些新奇的发明背后,实际上都有大数据的支持。
在李德毅看来,机器人既使用大数据也产生大数据,既是大数据的产物,也是大数据的推动者,机器人是大数据应用的一个典型代表。
“人工智能也是当下的一个热词,但人工智能并不是要人工造出一个生物意义上的人脑,而是要用机器实现在某一方面、某一领域或者某一情境下的人的智能。”他说,基于对大数据的认知,人们可以造出各式各样的机器人,解决机器人如何说、如何看、如何想和如何做等问题。
目前,他的团队也正在研发无人驾驶汽车,并已经成功试跑。
“在汽车车顶上安装一个64线激光雷达,实时获取路况数据,再利用微电子技术对数据加以分析,汽车依靠分析结果就能独立完成决策、自动驾驶。”李德毅介绍,这就是大数据的作用,而且应对复杂的测试路段,无人汽车耗时12分钟,比参加测试的有人驾驶汽车还要快。
当机器人时代真正来临,利用大数据智能分析与处理,联网后的机器人将更好地实现人与机器人、机器人与机器人、物与机器人地协调工作,为人类社会带来变革。
大数据产业发展需“接地气”
“近年来重庆的大数据产业有了很大发展,但整体水平仍有待提高。”中国人工智能学会副理事长、重庆邮电大学教授王国胤表示。
前不久,国务院发文敲定“互联网+”创业创新、“互联网”协同制造等11项重点行动,旨在让“互联网+”成为经济社会创新发展的重要驱动力量。信息技术的发展及其在各行业的渗透,将更凸显云计算、大数据在当今社会的作用。为此,他认为重庆更应该借此大好机遇加快发展大数据产业。
在他看来,各行各业都可以利用大数据,重庆发展大数据产业需“接地气”,结合重庆自身实际,但并不一定需要具体路线图,而是鼓励各行各业勇于创新。
“目前,我们也在积极与国内外机构合作,为重庆发展大数据产业助力。”他表示,日前,重庆邮电大学与加拿大阿尔伯塔大学联合成立了智能计算联合实验室,此次来渝参加高峰论坛的加拿大智能计算首席科学家、加拿大皇家科学院院士Witold Pedrycz也被聘为重邮客座教授,共同为我市发展大数据产业提供技术支持。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19