
大数据制造业时代来临_数据分析师考试
大数据时代启动期的三大支柱产业:网络业,新能源业和以3D打印业为代表的新型制造业,它们共同的底层推动力都是大数据的发展。基于全新制造理念和技术所产生的一代新产品(例如智能手机)正在引发新一轮投资、创业和创新热潮,改变着人们熟知的传统制造业。
简单地说,大数据制造业至少具有以下三个特征:
第一,产品都是数据终端,具有生产,存储,传输和加工数据的能力。大数据制造不是自动化、计算机化或是机器人之类的东西,那些只是生产过程的改良,没有革命意义。大数据制造的最硬标准就是产品本身是数据终端,产品的使用会产生数据,数据可以被再加工利用。万事万物皆可成为数据终端,目前最好的例子就是无人飞机、智能手机,以及各种装入各类传感器的设备。
第二,产品从设计、制造、销售、运维,直到更新的整个流程都依托各类数据和数据方式完成,普遍采用新材料,新工艺,新流程,高度依赖互联网。目前,能够初步实现这一点的是少数网络业公司,甚至产品本身也是数据化的。一些传统制造业的企业家们认为,只要一些辅助环节上利用了互联网,或者在市场营销环节上主要依靠互联网,就算是转型新生了。其实,这不过是刚刚起步而已,离彻底革命还有万里之遥。例如,无人驾驶汽车可以算作大数据制造的产品,而仅仅在汽车信息服务系统上联上互联网,只能算是传统产品的改良。
第三,产品都以产品销售和售后持续服务相结合形成新的商业模式。传统制造业的基本商业模式是产品出售,即使有些售后服务是围绕产品销售进行,也不能成为主要利润来源。而大数据制造业的产品是以持续服务为重点,产品销售围绕持续服务进行。一个典型的例子就是苹果公司。除了人尽皆知的手机和平板电脑外,真正的明星其实是它的网络应用商店,2014年的收入超过200亿美元,增长率超过70%,毛利率超过70%,仅收入规模就超过了除谷歌外的所有网络公司。这使得投资界不知如何对苹果公司分类,既不全是IT制造,也不全是网络服务。最好的办法就是另外定义一个产业,叫做大数据制造业。
凡是符合以上三个特征的企业都可以归入大数据制造业,无论它们正在努力转型之中还是刚刚创业。当然,目前还是大数据制造业的萌芽阶段,产品还难免带有传统的痕迹,对大数据的依赖和利用程度还相当有限。但是,一些带有革命性意义的创新正在涌现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04