
大数据将如何改造餐饮业来提升消费者的服务体验
大数据在餐饮行业应用的意义在于为餐饮企业节省成本、增强管理、提升客源和业绩、提升消费者的服务体验。
两年前,用IPDA点餐对餐饮行业来说是一件新鲜事。但两年后,这种新鲜也只是大巫见小巫了。最近麦当劳竟然在中国市场引入了自创汉堡的项目,给消费者提供24种食材,让消费者在一个足有半平米的大PAD上自行搭配,然后刷卡支付。吃麦当劳叔叔的汉堡进入中国25年,还从来没有像现在这么干过。
麦当劳也仅是一个案例而已。在移动互联网、互联网+等火爆概念之下,我们从来没感觉到餐饮这样一个熟悉的消费场景其实也是很“酷”很“爽”的。因为到餐厅吃饭以前只能银联刷卡,现在微信、支付宝等各种更便捷的支付已经逐步杀到。以前要出去吃饭,我们只能老老实实地到餐厅去,甚至繁忙时候还要排队,但现在我们可以用手机轻松地叫个外卖,或者用手机提前订好桌,顺便把菜点好、把账结好,到餐厅后菜已经满满地摆上桌。
餐饮行业数字化的改造已经普遍到来。但在这些数字化的体验背后,还蕴藏着一个大大的空间--大数据的运用。
数据,已经渗透到现在每一个行业。企业对海量数据的挖掘和运用,预示着一个新的增长端口打开了。大数据究竟是什么?以服装行业为例,一家数十亿规模的企业,其消费者起码是百万级的。如果能够通过系统将这些消费者的数据一个个抓起来、并进行很好的分析,可以让服装企业很好地了解到不同区域的消费者的消费需求,从而让企业能够在生产上就能进行更有针对的研发,然而更精准地向市场投放个性化的产品,服务好消费者。
相对于服装行业而言,即使同一个餐饮品牌不同门店的同一道菜或许都有口感的差异,因此餐饮并不是一个标准消费品。有人可能会怀疑,餐饮是随意性消费很强的行业,大数据挖掘究竟能有多大意义?
我们不妨先从其他行业的发展轨迹倒推大数据在餐饮行业的用处。要搜集大数据,首先要生成顾客的账户信息。这个账户信息能记录下客人对餐厅的出品和服务的评价;能记录下消费者特殊的消费偏好、消费能力甚至消费者的等待时长、用餐时长等数据。这些数据在餐厅给客人做合理的食谱推荐时可提供依据。
具体而言,可能会触及以下一些消费场景。比如一个餐厅推出牛肉新菜式,系统会自动将信息推送到有喜好牛肉的消费者的手机中。再比如餐厅发现其某款菜式特别热销,想开发成工业化产品进入家庭,那么系统能精准地找到喜欢这道菜的消费者作意见反馈和消费测试,甚至这批消费者很可能就是这款新品未来的首批种子用户。
总之,大数据在餐饮行业应用的意义在于为餐饮企业节省成本、增强管理、提升客源和业绩、提升消费者的服务体验。
不过有一点值得关注。所谓大数据,现在对于餐饮行业而言仅是小荷才露尖尖角。现在不少餐饮企业已经从会员管理系统搜集数据,但搜集信息只是第一步,后面还有大量的数据分析工作。而这一块,大部分餐饮企业并不懂如何做。另外,要让这些数据真正发挥功效,需要一个精细化运营的阶段,这或许需要一个比较长的周期才能见效果。这一点,连麦当劳这样成熟的餐饮连锁也向笔者坦承,其目前对大数据的运用还只在起步阶段。
不过我们也不妨大胆遥想一下。某天你下班路上饥肠辘辘,正准备打电话叫个香辣培根PIZZA外卖回家饱餐一顿,但餐厅的话务员可能告诉你:“女士,建议您点个其他PIZZA试试?因为后台监测到您前两天喉咙发炎去了趟医院。”而如果你在犹豫究竟该点什么PIZZA时,话务员可能又提醒你:“女士,您之前点过好几次芝士PIZZA,您是要继续点芝士PIZZA还是试试我们最近推的新口味?”当你下完订单报上家庭住址后,话务员可能又会提醒你:“女士,根据您手机显示的定位信息,您距离我们最近的门店大概300米,如果您选择到门店自取,会比我们送餐提早半个小时吃到PIZZA哦。”
这种消费场景似乎有点“恐怖”,但未来也并非没有可能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07