京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据能否破解数据造假难题_数据分析师考试
大数据是近年来的一个热词。什么是大数据分析?通俗地讲,就是运用一些数据分析软件工具,对海量的、混杂的数据进行分析,在融合丰富的实践基础上,运用创造性思维,得出突破性的结论。大数据包括3个特征:一是具有海量的、混杂的基础数据;二是熟练运用Hadoop和Spark等分析软件工具;三是具有开放的、有创造性的思维方式。只有具备了这3项,才能真正做好大数据分析。
大数据和以前的数据分析有3个明显的区别:一是原来的数据分析针对部分样本,大数据是所有的数据都要参与计算;二是大数据中,相关关系重于因果关系;三是大数据允许混杂数据甚至错误数据。
我们得到海量数据后,首先,要对这些数据进行本体分析,即对其本身进行分析,如污染源数据、环境质量数据等。其次,要做扩展分析,如分析清楚污染源数据和环境质量有什么关系。第三,要做延伸分析,即将污染源数据、环境质量数据和经济数据、人口数据、产业结构的数据结合起来进行分析。如果不做这些分析,就不算是大数据分析,或者说做不好大数据分析。
中国环境报:您刚刚谈到,大数据允许混杂数据甚至错误数据,这是为什么?
林宣雄:大数据允许混杂数据甚至错误数据。这是因为,大数据能够通过造假数据的特征将其辨识出来。造假的数据和平常的数据不一样,可以通过环比、同比、类比,发现数据中的异动,判断企业是否存在数据造假行为。
目前,通过线上、线下数据对比,能够迅速发现企业偷排行为。一个真实的案例是,某公司焦炉烟囱二氧化硫自动监控数据长期稳定在20mg/m3。但现场人工监测发现,实际数据为100mg/m3~200mg/m3,检查前后自动监控数据差距较大。经调查证实,企业擅自拔出部分二氧化硫测量探头,使采样孔漏气,稀释排放污染物,人为干扰采样装置、降低测量数据,造成监控数据失真。针对公司的违法行为,环保局依法对企业下达了处罚决定书,对企业存在的超标排放、干扰自动监控数据行为,分别给予6万元、3万元处罚,追缴2015年第一季度焦炉烟囱二氧化硫排污费,启动按日计罚程序,公安局对涉嫌违法的主管人员和其他直接责任人作出了行政拘留10日的行政处罚。
目前,我们正通过分析数据异常波动为环保部门精准执法提供线索。例如,我们每周都要为浙江省嘉兴市环保局提供一份在线数据出现异动的企业名单,环保局可以根据这份名单,有针对性地执法检查,执法效率可大大提高。
中国环境报:据您了解国外有没有通过大数据研究,发现环保数据造假的案例?
林宣雄:目前,国外大数据在环保领域还没有典型案例。这是因为,一些发达国家的环境问题已经得到了较好解决,而大数据的概念是这几年才提出的。但大数据应用在国外有一个经典案例,值得借鉴。2009年,甲型H1N1流感暴发的几周前,谷歌公司通过对运用谷歌软件搜索流感相关信息的人群进行分析,成功地预测了流感在美国境内的传播,其分析结果甚至具体到特定的地区和州,并且非常及时,令公共卫生官员倍感震惊。因为通常来说,美国疾病控制中心要在流感暴发一两周之后才可以做到这些。
大数据拥有如此大的威力,对于环境问题十分严峻的我国来说,其应用意义更加巨大。将大数据应用于环保领域,也将成为我国的一大创新。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01