京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 如何将价值转换为生产力_数据分析师考试
近年来,全球数据的增长速度之快前所未有,数据类型也变得越来越多。一方面,海量的多样化数据对信息的有效存储、快速检索提出了挑战,另一方面,其中蕴藏的巨大商业价值也引发了对数据处理、分析的巨大需求。
对于大数据的概念,至今没有一个被业界广泛采纳的明确定义。根据大数据概念的内涵,并结合业界对大数据特性的普遍认同,我们提出以下概念:大数据是指需要通过快速获取、处理、分析以从中提取价值的海量、多样化的交易数据、交互数据与传感数据。
其中,海量和多样化是对大数据的数据量与数据类型的界定;快速是对大数据获取、处理、分析速度的要求;价值是对大数据获取、处理、分析的意义和目的;交易数据、交互数据与传感数据是大数据的来源,交易数据来自于企业ERP系统、各种POS终端,以及网上支付系统等业务系统;交互数据来自于移动通信记录以及社交媒体等;传感数据来自于GPS设备、RFID设备、视频监控设备等。
对大数据的利用将成为企业提高核心竞争力、抢占市场先机的关键。大数据将推动各个行业的信息技术应用产生两大重要的趋势:
一是数据资产化,信息部门将从成本中心转向利润中心。在大数据时代,数据渗透各个行业,渐渐成为企业战略资产。拥有数据的规模、活性,以及收集、运用数据的能力,将决定企业的核心竞争力。
二是决策智能化,企业战略将从业务驱动转向数据驱动。智能化决策是企业未来发展的方向。过去很多企业对自身经营发展的分析只停留在数据和信息的简单汇总层面,缺乏对客户、业务、营销、竞争等方面的深入分析。在大数据时代,企业通过挖掘大量内部和外部数据中所蕴含的信息,可以预测市场需求,进行智能化决策分析,从而制定更加行之有效的战略。
那么对于行业用户,应当怎样制定大数据应对策略以充分利用大数据所蕴含的巨大商业价值呢?以下两方面建议可供参考:
一方面,应当通过云平台实现数据大集中,形成企业数据资产。对于大型集团企业,各级子公司和分公司的ERP系统每天都在生成大量的交易数据和业务数据。分散在各个业务系统中的数据无法形成集中的资源池、不能互联互通,将严重影响对大数据的统一管理与价值挖掘。实现数据集中是大数据利用的第一步。
另一方面,应当深度分析挖掘大数据的价值,推动企业智能决策。行业用户应当重视对大数据的价值的深入分析与挖掘,推动企业决策机制从业务驱动向数据驱动转变,提高企业竞争力。根据预测,大数据挖掘和应用可以创造出超万亿美元的价值,数据将成为企业的利润之源,掌握了数据也就掌握了竞争力。企业必须更加注重数据的收集、整理、提取与分析。
未来3-5年,那些真正理解大数据并能利用大数据进行价值挖掘的企业,与对大数据价值挖掘重视程度不够的企业之间的差距进一步拉大。真正能够利用好大数据,并将其价值转化成生产力的企业将具备强劲的竞争优势,从而成为行业领导者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27