
破解大数据时代的“战争迷雾”_数据分析师考试
忽如一夜春风来。一个大规模生产、分享和应用大数据的时代正在开启。
这神奇的大数据到底有什么作用?如何在战场上有效地利用它?笔者走进军队重点实验室——解放军理工大学指挥信息系统学院军用数据与知识工程实验室,带你一探究竟。
破解“数据海洋”难题
数据不断更新,信息快速传递。战场信息和旅、营、连三级指挥数据在实验室屏幕上高速流转,实验室的郝文宁教授边走边介绍:“未来信息化条件下,战场环境日益复杂,基于信息系统的各种作战力量以大空间、多渠道、多方式广泛作用于多维战场空间,引发了数据规模的爆炸式增长。这些数据由于体量巨大、类型复杂,极易使军事指挥决策者深陷‘数据海洋’,从而影响决策水平和作战效能。”
只见郝教授在大屏幕中输入关键字“机动”,数万条相关信息链接立即分页呈现。郝教授解释,这些数据出自各军兵种和作战部队,往往因“条块分割”而导致数据关联判别程度低,难以支撑协同指挥。因此,如何建立全军统一的数据处理系统,是首当其冲要解决的问题。
据悉,该实验室的大数据研究十几年前就已开始。1998年初步实现了军事训练数据的关系化、标准化管理,2000年实现了多节点群联合作战演习的数据同步,2004年首次提出军用数据完整利用链的构建方法,研发了“军事训练数据服务支撑平台”,解决了诸军兵种联合演习数据的远程接入、汇聚等技术难题。
让指挥员“耳聪目明”
信息化战场的指挥员,需要像大公司CEO一样,紧盯着大数据屏幕指挥战争。因此,数据是否精准、正确,将直接影响指挥决策的成败。
走进数据采集处理实验室,各种形状各异的仪器装备让笔者眼花缭乱。随着陈刚教员的指引,笔者看到3个黑盒子,大小分别像一部手机、一个移动硬盘、一个DVD播放器。据悉,这3个不起眼的装备,就是该实验室为解决演习数据采集而研发的“单兵单装定位设备”“手持调理终端”和“北斗数据处理服务器”。这些装备可随身携带,可以实时采集、传输作战单位信息。
如今,该实验室已拥有全军规模最大的军事训练数据资源,正在加速建设全军首个军事语料库和军事训练本体库。“有了准确的战场数据来源,通过数据深度挖掘,指挥员就能快速获取并分析战场感知元素,从中发现作战对手的军事企图和行动规律。”陈刚教员介绍说,依靠大数据作支撑,指挥员在未来战场上将更加“耳聪目明”。
打赢实验室里的战争
战争胜负归根结底是人才的较量。建设信息化军队、打赢信息化战争,迫切需要一大批军用数据与知识工程方面的专业人才。
在中国工程院李德毅院士指导下,数据规划建模、数据挖掘与信息决策、数据可视化、数据质量控制、数据采集处理、大数据技术等6个课程实验室和2个数据工程专修室相继落成,教学内容、环境、手段与作战部队保持高度同步,该实验室已成为我军军事训练领域基础数据研究与服务保障的权威专业机构。
去年6月,该实验室奉命与南京军区某部进行联教联训,该院本科学员申屠钦受命担任作战“参谋”。接到指挥部传来的新指令,他综合运用各种战场数据和决策辅助系统,迅速制作生成一套完整的作战方案。“实施火力打击!”一声令下,指挥车的屏幕上显示出数套发射单元的操作进程,随着一枚枚“利剑”腾空而起,作战任务圆满完成。
大数据的广泛运用,是数据制胜的信息化战争的必然趋势。未来作战,如何利用战场数据支撑指挥员科学决策,是我们必须应对的挑战和机遇。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14