
零售企业如何让大数据开花结果_数据分析师考试
日前,中国商业联合会数据分析专业委员会会长邹东生在第三届中国大数据分析行业峰会上提出,目前大数据行业已经出现“浮躁”现象——大家都在追捧大数据,但是目前大数据还仅仅停留在技术层面,真正落实、应用大数据的成功案例还很少。
互联网时代的到来,改变了整个消费市场,消费者的消费习惯也呈现出个性化、多样化的趋势,零售商也开始学习互联网思维,以消费者的需求为中心。就是在这样的背景下,大数据“火起来”了。要了解消费者的需求,就需要从消费者的习惯、兴趣、消费能力等行为中发现商机,大数据就是对这些行为的捕捉,大数据搜集的信息正是构成消费者图像描绘的要素。然而,无论是专业的大数据分析企业,还是零售商,它们对大数据的理解只停留在最浅显的技术表面,而对于大数据与零售业务的结合而是一知半解。
现状:很热 也很“浮躁”
传统零售企业与互联网企业联手,真正的意图都是要搭乘大数据快车。
邹东生介绍,近两年来,很多机构与企业都来找数据分析专业委员会合作,并且在日常的工作中,也经常遇到很多大小不一的企业在谈论、运用大数据。
大数据在零售行业也很“吃香”。近日,背靠腾讯的大众点评和百盛集团达成合作,用点评的2亿用户资源为线下商家导流;另外,阿里巴巴集团也启动了银泰商业的转型,阿里将利用其强大的消费者数据库,让实体商业从“坐商”转变为“行商”。传统零售企业与互联网企业联手,真正的意图都是要搭乘大数据快车。
但正是在这火热的市场中,也出现了“浮躁”的火苗。
身为数据分析专业委员会会长的邹东生每天都在与大数据打交道,近两年来,随着互联网时代的到来,他深刻体会到大数据的“火热”,因此,他带领自己的团队开始寻找一些成功案例,欲将其经验在行业内推广。然而,令人意想不到的是,邹东生找了很多机构,最终却并没有找到令他“感兴趣”的实例。这个结果让邹东生认识到,“大数据是很热,但是落地的项目、落地的案例还不多,大数据也很浮躁。”
邹东生介绍,社会上关于大数据的会议很多,诸如政府举办的会议,企业举办的会议,还有一些地方上的联盟举办的会议,形形色色。但是这些会议很多不是真正的分析人员——真正给企业带来价值的人组织的,而是技术流的人组织的。“(他们)在会议上讨论什么是分布式计算,平台、数据化的云、存储,动不动就是几百万元、几千万元甚至上亿元投资的产品,好像大数据是用不起的东西,是一个需要花很多钱才能构建的东西。”
但事实上,大数据对于企业来说真正的价值是与业务的结合,是落地与应用。并且,这种落地也并非完全依靠大量的资金来实现。
价值:将数据转化为业务
帮助企业赚钱,使企业平稳地有显见性地应用,这才是大数据带来的真实东西。
运用:先储备应用小数据
很多企业已经拥有自己的小数据,企业可以先从自己搜集的数据分析开始,一步步地接入大数据。
的确,大数据的落地很重要,但是零售企业应该如何实现大数据的落地呢?“对于企业来说,大数据其实并不遥远,事实上,很多企业已经拥有自己的小数据,企业可以先从自己搜集的数据分析开始,一步步地接入大数据。”邹东生认为。
邹东生介绍,很多敏感行业,尤其是零售行业拥有很多自己的内部存储,包括商品数据、消费者数据、供应商数据以及相互间的关联数据等,然而传统零售业企业并未充分利用这些数据。“很多零售商自己的小数据还没有用起来,小数据都能起到立竿见影的效果,如果不用,谈何大数据,谈何互联网+?”
因此,邹东生认为,数据分析引入得越早,其价值越能得以凸显,更何况将来引入大数据建设时,如果没有分析先导,构建数据平台时就无法理解这些数据,也无法根据数据建立企业决策模型。
银联智惠联合创始人龙凯也表示,企业应尽快把数据的价值发挥出来,在目前“诸侯割据”的阶段,应该先把自己的数据用起来,挖掘起来,把负债变成资产,把数据相关的人员储备起来,做好一切的准备。而如果等待数据价值真正爆发的时候,再去准备就晚了。
周庭锐在日常工作中也遇到了沈志勇提到的问题。周庭锐举例说,一个服装企业,拥有十万笔生产的数据以及铺装版型,但是这些数据都写在表格里,版型都是画出来的,周庭锐不得不做一个程序帮企业整理、清洁数据。“像这样的数据清洁是中国走上真正大数据应用的最大障碍。”
尽管目前很多行业都已经认识到大数据的重要性,但是却并没有有效地普及,周庭锐认为其中有三方面原因。一是投入很大;二是产出变现的疑虑;三是从无到有的可行性问题。“目前很多大数据应用模型都太"高大上",但事实上,大数据不是这样的,它要配备到很多中小企业才可以,不能太难太贵。企业也可以借助很多免费工具,比如PC平台。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14