京公网安备 11010802034615号
经营许可证编号:京B2-20210330
到底什么是大数据征信_数据分析师考试
国内信用体系建设现状及市场规模
目前中国社会信用体系处于起步阶段。围绕征信体系建设的法律法规、业务规则、数据处理模式及方法正逐步完善和加强,与美国等发达国家相比,我国征信工作主要由央行来主导,与之相关的诚信权威信息目前还没完善,征信体系建设起步较晚。
2013年3月,我国首部征信行业法规《征信管理条例》开始实施;2013年12月,人民银行制定的《征信机构管理办法》正式施行;2014年6月,人民银行征信中心开始对个人查询本人信用报告实施收费制度;2014年6月,国务院出台了《社会信用体系建设规划纲要(2014-2020年)》,明确到2020年,基本建成以信用信息资源共享为基础的覆盖全社会的征信系统。
据人民银行发布的中国首份征信发展报告《中国征信业发展报告(2003-2013)》显示:据不完全调查,截至2012年年底,中国有各类征信机构150多家,征信行业收入20多亿元。此外,人民银行征信中心网站上的数据显示,截至2013年11月底,征信系统收录自然人8.3亿以上,收录企业及其他组织近1940万户。而美国三大个人征信公司在2013年的营收规模就达到了512亿元人民币。国内征信既有很大的市场空间,也有很多问题急需解决完善。
大数据征信与传统征信天然互补
传统征信方式存在着五点缺陷:1,封闭、数据不够完善。传统征信方式是通过固定途径收集一些可用作评级的信息,由分析人员对各项数据进行分析、评级,最终得到受评对象履约能力和履约意愿的评级。2. 数据容易失真产生偏差。由于人工的介入,必然受到职业素养、道德品质等主观因素影响,导致对受评对象的评价结果与客观事实存在一定偏差。3.实时性差、后续难以更正。没有用户评价系统,直接用户无法参与评定,难以后续跟踪。在数据失真偏差的情况下也难以更正。4.方便性差。征信平台上传数据积极性低、更新不及时、接入门槛高、查询次数受到限制。5.人力资源成本大。随着未来征信市场快速发展,征信产品种类和数量日益增加。面对巨大而繁杂的业务,人力成本不断增加对于征信企业来说亦是一个不容忽视的问题,行业人才的稀缺与行业快速发展将不可避免地产生矛盾。
大数据催生的征信体系建设则可以很好的解决传统征信体系面临的问题。因为其数据覆盖面广,涉及的维度更全面,通过互联网方便快捷的服务全体商家。
相比传统的征信方式,大数据信用采用云计算技术,从数据录入开始到评价结果输出的整个过程全部由计算机算法完成,避免了主观判断的影响,确保评价结果的真实性;即使同时处理多个受评对象,仍然能够保证快速、准确的高效性。大数据信用的运行成本主要来自知识产权和硬件的投入,相比大规模的人员需求,低成本优势显而易见。此外,大数据信用还能够满足评价结果与信用信息的同步,也就是说,当受评对象的信用信息发生变化时,能够对其信用进行快速及时的计算,保证了信用的动态实时性。
老刘认为未来的征信业将以智能数据分析系统为平台,依靠大数据挖掘技术实现转型升级。一方面依托大数据的征信体系可以深度挖掘用户信用信息,防范潜在的信用风险,实现有效的风险控制;另一方面,依托大数据的征信体系可以在数据充分信息化的基础上实现精细化管理。
大数据征信平台助力中小微企业融资
中国中小企业协会副会长、金电联行董事长范晓忻在接收央视采访时表示:“大数据不仅能够对风险进行度量,而且能够做到一定程度的预判”。
大数据征信平台可以通过对中小微企业3到5年,甚至是更长时间的历史生产经营数据以及交易数据进行挖掘、筛选、计算、分析。使企业真实的生产经营状况、成长发展状态,通过数据真实客观的反应出来。将无形的信用进行量化,形成可以让金融机构为企业发放贷款的信用信息。大数据信用融资改变了通过抵质押从金融机构获取贷款的传统方式,从结构上丰富了国家的金融体系。
金电联行作为首批获得中国人民银行颁发企业征信牌照的第三方企业征信机构,中国第一家拥有具有自主知识产权的信用信息云服务平台,第一个提供第三方信息价值链服务的运营模式。已经为中国上千家的中小微企业提供了信用融资服务,累计提供了60多亿元非抵质押的纯信用融资授信。其中融资额度最高达到了6800万元,最低一笔为98万元,而且迄今为止从未发生过一笔不良贷款。在贷后风险监管方面,金电联行也已经为国家开发银行、广发银行等多家金融机构提供将近300亿的监管服务。预计年内,监管金额将超过1000亿元人民币。
据悉,央行上周对首批入围个人征信牌照的机构再次进行调研,对首批入围芝的麻信用、考拉征信、腾讯征信等要做最后验收。一位知情人士透露,首批个人征信牌照有望在本月底发放。老刘相信,未来大数据征信平台将会建立更客观的信用评价体系,从中小微企业融资入手,打破以财务信息为核心的固有信用评价思维,改变以抵押担保为主的传统信贷方式。创建一个低成本、大批量、高效能、全风控的纯信用贷款管理模式。破解我国多年的中小微企业信用融资的难题,并不断向金融资本和社会信用市场延伸,形成以“数据约束”解决“信用悖论”的客观信用理论与评价体系,开创我国信用服务的大数据时代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12