
到底什么是大数据征信_数据分析师考试
国内信用体系建设现状及市场规模
目前中国社会信用体系处于起步阶段。围绕征信体系建设的法律法规、业务规则、数据处理模式及方法正逐步完善和加强,与美国等发达国家相比,我国征信工作主要由央行来主导,与之相关的诚信权威信息目前还没完善,征信体系建设起步较晚。
2013年3月,我国首部征信行业法规《征信管理条例》开始实施;2013年12月,人民银行制定的《征信机构管理办法》正式施行;2014年6月,人民银行征信中心开始对个人查询本人信用报告实施收费制度;2014年6月,国务院出台了《社会信用体系建设规划纲要(2014-2020年)》,明确到2020年,基本建成以信用信息资源共享为基础的覆盖全社会的征信系统。
据人民银行发布的中国首份征信发展报告《中国征信业发展报告(2003-2013)》显示:据不完全调查,截至2012年年底,中国有各类征信机构150多家,征信行业收入20多亿元。此外,人民银行征信中心网站上的数据显示,截至2013年11月底,征信系统收录自然人8.3亿以上,收录企业及其他组织近1940万户。而美国三大个人征信公司在2013年的营收规模就达到了512亿元人民币。国内征信既有很大的市场空间,也有很多问题急需解决完善。
大数据征信与传统征信天然互补
传统征信方式存在着五点缺陷:1,封闭、数据不够完善。传统征信方式是通过固定途径收集一些可用作评级的信息,由分析人员对各项数据进行分析、评级,最终得到受评对象履约能力和履约意愿的评级。2. 数据容易失真产生偏差。由于人工的介入,必然受到职业素养、道德品质等主观因素影响,导致对受评对象的评价结果与客观事实存在一定偏差。3.实时性差、后续难以更正。没有用户评价系统,直接用户无法参与评定,难以后续跟踪。在数据失真偏差的情况下也难以更正。4.方便性差。征信平台上传数据积极性低、更新不及时、接入门槛高、查询次数受到限制。5.人力资源成本大。随着未来征信市场快速发展,征信产品种类和数量日益增加。面对巨大而繁杂的业务,人力成本不断增加对于征信企业来说亦是一个不容忽视的问题,行业人才的稀缺与行业快速发展将不可避免地产生矛盾。
大数据催生的征信体系建设则可以很好的解决传统征信体系面临的问题。因为其数据覆盖面广,涉及的维度更全面,通过互联网方便快捷的服务全体商家。
相比传统的征信方式,大数据信用采用云计算技术,从数据录入开始到评价结果输出的整个过程全部由计算机算法完成,避免了主观判断的影响,确保评价结果的真实性;即使同时处理多个受评对象,仍然能够保证快速、准确的高效性。大数据信用的运行成本主要来自知识产权和硬件的投入,相比大规模的人员需求,低成本优势显而易见。此外,大数据信用还能够满足评价结果与信用信息的同步,也就是说,当受评对象的信用信息发生变化时,能够对其信用进行快速及时的计算,保证了信用的动态实时性。
老刘认为未来的征信业将以智能数据分析系统为平台,依靠大数据挖掘技术实现转型升级。一方面依托大数据的征信体系可以深度挖掘用户信用信息,防范潜在的信用风险,实现有效的风险控制;另一方面,依托大数据的征信体系可以在数据充分信息化的基础上实现精细化管理。
大数据征信平台助力中小微企业融资
中国中小企业协会副会长、金电联行董事长范晓忻在接收央视采访时表示:“大数据不仅能够对风险进行度量,而且能够做到一定程度的预判”。
大数据征信平台可以通过对中小微企业3到5年,甚至是更长时间的历史生产经营数据以及交易数据进行挖掘、筛选、计算、分析。使企业真实的生产经营状况、成长发展状态,通过数据真实客观的反应出来。将无形的信用进行量化,形成可以让金融机构为企业发放贷款的信用信息。大数据信用融资改变了通过抵质押从金融机构获取贷款的传统方式,从结构上丰富了国家的金融体系。
金电联行作为首批获得中国人民银行颁发企业征信牌照的第三方企业征信机构,中国第一家拥有具有自主知识产权的信用信息云服务平台,第一个提供第三方信息价值链服务的运营模式。已经为中国上千家的中小微企业提供了信用融资服务,累计提供了60多亿元非抵质押的纯信用融资授信。其中融资额度最高达到了6800万元,最低一笔为98万元,而且迄今为止从未发生过一笔不良贷款。在贷后风险监管方面,金电联行也已经为国家开发银行、广发银行等多家金融机构提供将近300亿的监管服务。预计年内,监管金额将超过1000亿元人民币。
据悉,央行上周对首批入围个人征信牌照的机构再次进行调研,对首批入围芝的麻信用、考拉征信、腾讯征信等要做最后验收。一位知情人士透露,首批个人征信牌照有望在本月底发放。老刘相信,未来大数据征信平台将会建立更客观的信用评价体系,从中小微企业融资入手,打破以财务信息为核心的固有信用评价思维,改变以抵押担保为主的传统信贷方式。创建一个低成本、大批量、高效能、全风控的纯信用贷款管理模式。破解我国多年的中小微企业信用融资的难题,并不断向金融资本和社会信用市场延伸,形成以“数据约束”解决“信用悖论”的客观信用理论与评价体系,开创我国信用服务的大数据时代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28