京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据标准研制处起步阶段 元数据研究待加强
从IT 时代到DT 时代,大数据已成为一场革命,正在改变人们的生活、工作和思维方式。大数据标准研制作为产业发展基础,目前仍处于起步阶段。为实现数据间无歧义沟通,元数据标准研究与应用显得更为迫切。
在研国标有10项
大数据领域的标准化工作是支撑大数据产业发展和应用的重要基础。《中国电子报》记者近日从全国信标委大数据标准工作组第二次会议上获悉,目前大数据相关标准研制还处于起步阶段。国际上有4 大标准化组织针对大数据进行专门研究,分别是ISO/IEC JTC1 SC32、ISO/IEC JTC1 WG9、ITU 和NIST。
为了推动和规范我国大数据产业的快速发展,建立大数据的产业链,与国际标准接轨,我国在2014 年12 月正式成立了全国信息技术标准化技术委员会大数据标准工作组(以下简称工作组)。工作组主要负责制定和完善我国大数据领域标准体系,组织开展大数据相关技术和标准的研究,申报国家、行业标准,承担国家、行业标准制修订计划任务,宣传、推广标准实施,组织推动国际标准化活动。目前,工作组正在研制的国家标准有10 项,其中《信息技术大数据术语》和《信息技术大数据技术参考模型》两项国家标准已经完成相应的草案,准备进入征求意见阶段。
“目前已有138 家单位申请成为工作组成员。”中国电子技术标准化研究院副院长高林表示,“工作组下一步将继续完善和维护工作组工作平台,加强元数据、数据分类、数据开放共享等方面的标准化研究,同时将积极开展测试评价、认证等相关准备工作。”
值得一提的是,在研究提出大数据技术框架的基础上,结合数据全周期管理,数据自身标准化特点,当前各领域推动大数据应用的初步实践,以及未来大数据发展的趋势,工作组提出了大数据标准体系框架。大数据标准体系由五个类别的标准组成,分别为:基础标准、技术标准、产品和平台标准、大数据安全标准及应用和服务标准。
有专家认为,针对大数据,我国在数据管理、云计算、信息安全等方面,已经发布和在研一些标准,适用于大数据环境,提供了一定的基础,但是缺乏标准化整体规划; 数据分析、数据安全、数据质量管理等技术标准,数据处理平台、开放数据集、数据服务平台类新型产品和服务形态的标准较为缺乏,亟须研制。
需加强元数据标准研究
近年来,大数据技术已经开始步入高速发展阶段,国内外从事大数据方面研究和服务的公司越来越多,行业分得越来越细。不过,在行业应用中,由于缺乏统一的数据描述,数据在解释、同步、转换过程中时常会存在歧义,数据拥有者不能及时地按业务要求提供正确的数据时有发生。因此,在大数据时代,借助于元数据了解数据元素含义和上下文的需求越来越强烈。
记者了解到,ISO/IEC JTC1 SC32 下设4个工作组研究不同领域的标准研制,其中就包括元数据。其范围涉及研制开发和维护有利于规范和管理的元数据、元模型和本体的标准,此类标准有助于理解和共享数据、信息和过程,支持互操作性,电子商务以及基于模型和基于服务的开发,包括:建议用于规定和管理元数据、元模型和本体的框架;规定和管理元数据、元模型和本体;规定和管理过程、服务和行为数据;开发管理元数据、元模型和本体的机制,包括注册和存储;开发交换元数据、元模型和本体的机制,包括基于互联网、局域网等的语义。
对于我国元数据标准制定,有专家就指出,我国迫切需要加强元数据标准或元数据模型的研究与应用,健全完善元数据标准规范及元数据模型。需要充分结合政府各部门现有数据资源建设情况,针对当前政务大数据资源、科技大数据资源、电子商务大数据资源等重点领域,研制元数据标准或统一的元数据标准模型框架,使得大数据向着标准化、条理化、脉络化方向发展,实现无歧义沟通、理解和使用数据。解决当前数据在交易、使用等过程中存在的问题,更好地对数据进行管控,挖掘大数据,发挥数据价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27