
第二节 General Factorial过程
6.2.1 主要功能
调用此过程可对完全随机设计资料、配伍设计资料、析因设计资料、正交设计资料等等进行多因素方差分析或协方差分析。
6.2.2 实例操作
[例6-2]下表为三因素析因实验的资料,请用方差分析说明不同基础液与不同血清种类对钩端螺旋体的培养计数的影响。
6.2.2.1 数据准备
激活数据管理窗口,定义变量名:基础液为base,血清种类为sero,血清浓度为pct,钩端螺旋体的培养计数为X,按顺序输入相应数值,建立数据库。
6.2.2.2 统计分析
激活Statistics菜单选ANOVA Models中的General Factorial...项,弹出General Factorial ANOVA对话框(图6.3)。在对话框左侧的变量列表中选变量x,点击O钮使之进入Dependent Variable框;选要控制的分组变量base、sero和pct,点O钮使之进入Factor(s)框中,并分别点击Define Range钮,在弹出的General Factorial ANOVA:Define Range对话框中确定各变量的起止值,本例变量base的起止值为1、3,变量sero的起止值为1、2,变量pct的起止值为1、2。之后点击OK钮即可。
6.2.2.3 结果解释
在结果输出窗口中,系统显示48个观察值进入统计,三个因素按其各自水平共产生12种组合。
分析表明,模型总效应的F值为10.55,P值 < 0.001,说明三因素间存在有交互作用。单因素效应和交互效应导致的组间差别比较结果是:
单因素组间比较:
A:基础液(BASE)
F = 4.98,P = 0.012,说明三种培养基培养钩体的计数有差别;
B:血清种类(SERO)
F = 61.265,P < 0.001,说明两种血清培养钩体的计数有差别;
C:血清浓度(PCT)
F = 3.49,P = 0.070,说明两种血清浓度培养钩体的计数无差别。
两因素构成的一级交互作用:
A×B:基础液(BASE)×血清种类(SERO)
F = 5.16,P = 0.011,交互作用明显;
B×C:血清种类(SERO)×血清浓度(PCT)
F = 15.96,P < 0.001,交互作用明显;
A×C:基础液(BASE)×血清浓度(PCT)
F = 0.78,P = 0.465,交互作用不明显。
三因素构成的二级交互作用:
A×B×C:基础液(BASE)×血清种类(SERO)×血清浓度(PCT)
F = 6.75,P = 0.003,交互作用明显。
(略)
第三节 Multivarite过程
6.3.1 主要功能
调用此过程可进行多元方差分析。此外,对于一元设计,如涉及混合模型的设计、分割设计(又称列区设计)、重复测量设计、嵌套设计、因子与协变量交互效应设计等,此过程均能适用。
6.3.2 实例操作
[例6-3]甲地区为大城市,乙地区为县城,丙地区为农村。某地分别调查了上述三类地区8岁男生三项身体生长发育指标:身高、体重和胸围,数据见下表,问:三类地区之间男生三项身体生长发育指标的差异有无显著性?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27