京公网安备 11010802034615号
经营许可证编号:京B2-20210330
上周从买了两本书《谁说菜鸟不会数据分析》和《大数据时代》,学习过程中想把书本内容通过总结、理解、实践、内化掌握来变成自己的东西,把握好学习的节奏,坚持就好。
初级阶段我更多的是来转述前辈们总结出的东西,但自己若有实践中的体会也会写入其中(自己的体会粗体标出)。本来就是记录菜鸟成长过程,所以内容对行家来说太小儿科,对新手入门来说或许会有些帮助。
以下开始是对《谁说菜鸟不会分析数据》一书的学习总结,第一章:数据分析那些事儿。
1.何谓数据分析?
用适当的统计分析方法对收集来的大量数据进行详细研究和概括总结,以求最大化地发挥数据的作用,提取有用信息和形成结论,这一过程叫做数据分析。
2.数据分析的三大作用:现状分析、原因分析、预测分析。
1.明确分析思路:
首先要明确分析目的:菜鸟与数据分析师的区别就在于菜鸟做分析时目的不明确,从而导致分析过程非常盲目。这点有比较深的体会,在公司里做过关于搜索和新手的产品数据分析,自己对分析目的没考虑太多,靠的是前人留下的上期数据分析结果,倘若让我从零开始做,估计会很盲目。
然后确定分析思路:梳理分析思路,并搭建分析框架,把分析目的分解成若干个不同的分析要点,即如何具体开展数据分析,需要从哪几个角度进行分析,采用哪些分析指标。
最后还要确保分析框架的体系化,使分析结果具有说服力:营销方面的理论模型有4P、用户使用行为、STP理论、SWOT等;管理方面的理论模型有PEST、5W2H、时间管理、生命周期、逻辑树、金字塔、SMART等。在上周一个汇报上使用了SWOT分析方法,对这些营销或管理的模型还都很陌生。
2.数据收集:
一般数据来源于以下几种方式:数据库、公开出版物(统计年鉴或报告)、互联网、市场调查。
3.数据处理:
数据处理主要包括数据清洗、数据转化、数据提取、数据计算等处理方法。导师提过在做数据处理时,不要在原始数据上进行数据处理以防原始数据丢失,保留数据处理过程以便发现错误时查找。
4.数据分析:
数据分析是指用适当的分析方法及工具,对处理过的数据进行分析,提取有价值的信息,形成有效结论的过程。
与数据挖掘的关系是数据挖掘侧重解决四类数据分析问题:分类、聚类、关联和预测,重点在寻找模式与规律。
5.数据展现:
一般情况下,数据是通过表格和图形的方式来呈现的。常用的数据图表包括饼图、柱形图、条形图、折线图、散点图、雷达图等。进一步加工整理变成我们需要的图形,如金字塔图、矩阵图、漏斗图、帕雷托图等。
在一般情况下,能用图说明问题的就不用表格,能用表说明问题的就不用文字。
6.报告撰写:
一份好的数据分析报告,首先需要有一个好的分析框架,并且图文并茂,层次明晰,能够让阅读者一目了然。结构清晰、主次分明可以使阅读者正确理解报告内容;图文并茂,可以令数据更加生动活泼,提高视觉冲击力,有助于阅读者更形象、直观地看清楚问题和结论,从而产生思考。
另外,数据分析报告需要有明确的结论,没有明确结论的分析称不上分析,好的分析报告一定要有建议或解决方案。
1.分析目的不明确,为分析而分析。
2.缺乏业务知识,分析结果偏离实际:数据分析师的任务不是单纯做数学题,数据分析师还必须懂营销,懂管理,更要懂策略。上周五听了公司专门做数据分析的同事做的关于新手留存的数据分析专题,他们数理统计专业知识必然过硬,而且对业务比较熟悉,能通过数据结合不同业务做出相应结论,还能为不同业务提出改进意见,不熟悉业务不懂策略怎行?
3.一味追求使用高级分析方法,热衷研究模型。
1.数据分析的广阔前景:根据美国劳工部预测,到2018年,数据分析师的需求量将增长20%。就算你不是数据分析师,但数据分析技能也是未来必不可少的工作技能之一。
2.数据分析师的职业要求:懂业务,懂管理,懂分析,懂工具,还要懂设计。
其中,懂分析中,基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等;高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
懂工具中,常用的数据分析工具有Excel、Access、SPSS、SAS,先学会用Excel,它能解决80%甚至100%的问题。
懂设计中,图表的设计是大学问,如图形的选择、版式的设计、颜色的搭配等,都需要掌握一定的设计原则。
以下几个常见的只是提一下:平均数、绝对数和相对数、百分比和百分点、频数和频率、比例和比率。
另外倍数与番数、同比与环比,我之前有疑问的特别提下。番数是指原来数量的2的N次方倍,比如翻一番为原来数量的2倍(2的一次方),翻两番为4倍(2的二次方)。同比是与历史同时期进行比较得到的数值,环比是指与前一个统计期进行比较得到的数值。(文章来源:CDA数据分析师培训官网)
这部分主要是对数据分析有了一个全面的了解而又粗略的认识,说实话这样的总结复述后很多地方我印象也不深,但总比看过一遍后不再管能多记住一些,当然能实践才会印象更深。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12