京公网安备 11010802034615号
经营许可证编号:京B2-20210330
上周从买了两本书《谁说菜鸟不会数据分析》和《大数据时代》,学习过程中想把书本内容通过总结、理解、实践、内化掌握来变成自己的东西,把握好学习的节奏,坚持就好。
初级阶段我更多的是来转述前辈们总结出的东西,但自己若有实践中的体会也会写入其中(自己的体会粗体标出)。本来就是记录菜鸟成长过程,所以内容对行家来说太小儿科,对新手入门来说或许会有些帮助。
以下开始是对《谁说菜鸟不会分析数据》一书的学习总结,第一章:数据分析那些事儿。
1.何谓数据分析?
用适当的统计分析方法对收集来的大量数据进行详细研究和概括总结,以求最大化地发挥数据的作用,提取有用信息和形成结论,这一过程叫做数据分析。
2.数据分析的三大作用:现状分析、原因分析、预测分析。
1.明确分析思路:
首先要明确分析目的:菜鸟与数据分析师的区别就在于菜鸟做分析时目的不明确,从而导致分析过程非常盲目。这点有比较深的体会,在公司里做过关于搜索和新手的产品数据分析,自己对分析目的没考虑太多,靠的是前人留下的上期数据分析结果,倘若让我从零开始做,估计会很盲目。
然后确定分析思路:梳理分析思路,并搭建分析框架,把分析目的分解成若干个不同的分析要点,即如何具体开展数据分析,需要从哪几个角度进行分析,采用哪些分析指标。
最后还要确保分析框架的体系化,使分析结果具有说服力:营销方面的理论模型有4P、用户使用行为、STP理论、SWOT等;管理方面的理论模型有PEST、5W2H、时间管理、生命周期、逻辑树、金字塔、SMART等。在上周一个汇报上使用了SWOT分析方法,对这些营销或管理的模型还都很陌生。
2.数据收集:
一般数据来源于以下几种方式:数据库、公开出版物(统计年鉴或报告)、互联网、市场调查。
3.数据处理:
数据处理主要包括数据清洗、数据转化、数据提取、数据计算等处理方法。导师提过在做数据处理时,不要在原始数据上进行数据处理以防原始数据丢失,保留数据处理过程以便发现错误时查找。
4.数据分析:
数据分析是指用适当的分析方法及工具,对处理过的数据进行分析,提取有价值的信息,形成有效结论的过程。
与数据挖掘的关系是数据挖掘侧重解决四类数据分析问题:分类、聚类、关联和预测,重点在寻找模式与规律。
5.数据展现:
一般情况下,数据是通过表格和图形的方式来呈现的。常用的数据图表包括饼图、柱形图、条形图、折线图、散点图、雷达图等。进一步加工整理变成我们需要的图形,如金字塔图、矩阵图、漏斗图、帕雷托图等。
在一般情况下,能用图说明问题的就不用表格,能用表说明问题的就不用文字。
6.报告撰写:
一份好的数据分析报告,首先需要有一个好的分析框架,并且图文并茂,层次明晰,能够让阅读者一目了然。结构清晰、主次分明可以使阅读者正确理解报告内容;图文并茂,可以令数据更加生动活泼,提高视觉冲击力,有助于阅读者更形象、直观地看清楚问题和结论,从而产生思考。
另外,数据分析报告需要有明确的结论,没有明确结论的分析称不上分析,好的分析报告一定要有建议或解决方案。
1.分析目的不明确,为分析而分析。
2.缺乏业务知识,分析结果偏离实际:数据分析师的任务不是单纯做数学题,数据分析师还必须懂营销,懂管理,更要懂策略。上周五听了公司专门做数据分析的同事做的关于新手留存的数据分析专题,他们数理统计专业知识必然过硬,而且对业务比较熟悉,能通过数据结合不同业务做出相应结论,还能为不同业务提出改进意见,不熟悉业务不懂策略怎行?
3.一味追求使用高级分析方法,热衷研究模型。
1.数据分析的广阔前景:根据美国劳工部预测,到2018年,数据分析师的需求量将增长20%。就算你不是数据分析师,但数据分析技能也是未来必不可少的工作技能之一。
2.数据分析师的职业要求:懂业务,懂管理,懂分析,懂工具,还要懂设计。
其中,懂分析中,基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等;高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
懂工具中,常用的数据分析工具有Excel、Access、SPSS、SAS,先学会用Excel,它能解决80%甚至100%的问题。
懂设计中,图表的设计是大学问,如图形的选择、版式的设计、颜色的搭配等,都需要掌握一定的设计原则。
以下几个常见的只是提一下:平均数、绝对数和相对数、百分比和百分点、频数和频率、比例和比率。
另外倍数与番数、同比与环比,我之前有疑问的特别提下。番数是指原来数量的2的N次方倍,比如翻一番为原来数量的2倍(2的一次方),翻两番为4倍(2的二次方)。同比是与历史同时期进行比较得到的数值,环比是指与前一个统计期进行比较得到的数值。(文章来源:CDA数据分析师培训官网)
这部分主要是对数据分析有了一个全面的了解而又粗略的认识,说实话这样的总结复述后很多地方我印象也不深,但总比看过一遍后不再管能多记住一些,当然能实践才会印象更深。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27