京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析流程与常用术语_数据分析师考试
数据分析,就是对数据进行分析。较为专业的说法是,数据分析是指用适当的统计分析方法对收集得来的大量数据进行分析,将它们加以汇总、整理并消化,以求最大化地开发数据功能,发挥数据的作用。数据分析的目的是将隐藏在一大批杂乱无章的数据后面的信息集中并提炼出来,总结出研究对象的内在规律。
在统计学领域,数据分析分为描述性数据分析、探索性数据分析、验证性数据分析。其中探索性数据分析侧重于在数据中探索新的特征,验证性数据分析侧重于验证之前假设的真伪性。
从另一方面说,描述性数据分析属于初级分析方法,常见的分析方法有对比分析法、平均分析法、交叉分析法等,是我们工作中最常用的数据分析方法;而探索性数据分析以及验证性数据分析输入高级分析方法,常见的分析方法有相关分析、因子分析、回归分析等,对分析者的数学功底以及逻辑能力具有较高的要求。
数据分析前景
数据分析作为一个新的行业领域正在全球飞速的发展。目前在数据库技术、金融、通信方面发挥巨大的作用。试想,互联网发展了这么多年,积累了多大的数据?这数据隐含着什么规律?对公司发展和行业发展将会有多大的促进作用?数据分析将是未来的一项必不可少的工作技能,其发展前景广阔,薪水杠杠的,BAT都在搜罗中。
数据分析流程
根据我所学的知识,结合相关资料, 可以将数据分析总结为六个步骤:确定分析目的和内容、数据收集、数据处理、数据分析、数据展现、撰写报告。由于各个步骤详细描述将占据大篇幅,我这里就用思维导图形式加以概括,形成初步流程:
根据上图所展示的六大步骤,再参照各个步骤下细分的小步骤,相信大家(高手绕过,作为小白的我会被拍死)已经对数据分析有了基本的轮廓印象,和我一样的初入PM小白下来不妨找一个喜爱的细分市场或某款产品,试试看?
数据分析常用指标/术语
平均数
我们日常生活、工作中常说的平均数一般都指算术平均数。算术平均数指将一组数据通过累加求和,再除以参与求和的数据的个数,所获得的这一组数据的平均值。算术平均数在统计分析中具有重要的指标意义,通过平均数可以对比组内其他数据的沉浮、高低情况等。
绝对数和相对数
绝对数:绝对数是反应客观现象总体在一定时间、一定地点条件下的总规模、总水平的综合性指标,也是数据分析中常用的指标。比如年GDP,总人口,又如成都有70万考生,成都信息工程大学有2万师生等等。
相对数:相对数是指两个有联系的指标计算而得出的数值,它是反应客观现象之间的数量联系紧密程度的综合指标。相对数的计算公式:
相对数 = 比较值(笔数)/基础值(基数)
相对数一般以倍数、百分数等表示,它反应客观香香之间数量的联系程度。
百分比和百分点
百分比:百分比是相对数中的一种,他表示一个数是另一个数的百分之几,也成为百分率或百分数。百分比的分母是100,也就是用1%作为度量单位,因此便于比较。
百分点:百分点是指不同时期以百分数的形式表示的相对指标的变动幅度,1%等于1个百分点。比如,某公司发言,我公司今年第一季度的收入比上个季度提升了13个百分点。百分比一般与“提高了”、“上升/下降”等词搭配使用。
频数和频率
频数:一个数据在整体中出现的次数。某如某班学生成绩中,88分的有5个,则5为频数。反映了一个数据在整体样本中出现的次数。
频率:反应一个数据在样本中出现的频繁程度,是数据的频数除以样本总量得到的。
比例与比率
比例:比例是指在总体中各数据占总体的比重,通常反映总体的构成和比例, 即部分与整体之间的关系。比如某班男20,女30人,则男生的比例是2/5,女生是3/5。比例的基数(分母)是同一个基数。
比率:比率是指总体中某些数据之间的比值。反映了 整体中部分与部分之间的关系。以上述例子为例,男女比率为2:3.
倍数和番数
倍数:表示一个数据是两个数据的几倍,通常用一个数据除以另一个数据获得,倍数一般用来表示上升、增长幅度,一般不表示减少幅度。
番数:指原来数量的2的n次方。比如今年利润比去年翻一番,意思就是今年利润是去年2倍(2的1次方),今年利润比去年翻两番,就是今年利润是去年的4倍(2的2次方)。 所以,翻番可比倍数猛的多。
同比和环比
同比:指的是与历史同时期的数据相比较而获得的比值,反应事物发展的相对性。比如,我公司今年第一季度出海产量同比增长45%,意思就是今年第一季度的出海产量比去年第一季度的出海产量增加了45%,这就是同比。
环比:指与上一个统计时期的值进行对比获得的值,主要反映事物的逐期发展的情况。例如我公司今年第一季度出海产量环比增长22%,表示我公司今年第一季度的出海产量比去年第四季度(去年最后一个季度)出海产量增长了22%。
通俗简化的讲,同比=2015年5月 / 2014年5月,环比=2015年5月/2015年4月。
数据分析要求分析者具备态度严谨负责、好奇心强烈、逻辑思维清晰、擅长模仿、勇于创新等精神,这样才能高效率、保质保量、富有热情地进行挖掘数据并正确分析数据,给公司决策层提供可靠的数据结论。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14