
为什么说大数据是智能汽车的基础_数据分析师考试
可能有人会说,智能汽车不是都已经实现了吗?正在热卖的特斯拉和已经广为人知的Google无人驾驶汽车不就是智能汽车的代表吗?
我的看法是:这仅是智能汽车的星星之火,大部分的汽车还仅仅局限在加装智能硬件实现,能重新完整开发设计一个智能系统的也只有特斯拉和Google两家,并且也还存在种种问题,没有普及开来。
真正要实现智能汽车的关健是智能汽车数据孤岛的互联互通,这是智能汽车行业发展最大障碍之一。
先来看看智能汽车大数据的生产,几乎所有路上跑着的汽车都在产生难以置信的庞大数据量,轮胎气压,到发动机转速,到油温和速度,刹车片在传感器的监测之下,汽车每小时能产生5-250GB的数据。谷歌无人驾驶汽车每秒产生约1G的数据,相当于每秒发送20万封纯文本电子邮件或用电脑上传100张高清数码相片,每一辆高度电气化集成的汽车都是一个庞大的数据库。
有了这么多大数据,按理说我们的汽车智能应该普及度如此之低?电动车,货运,商务,私家车应该都享受到大数据带来的智慧,关健的问题是这各个大数据是孤立互不相联的,智能汽车的大数据平台化严重不足,目数据平台化大众汽车做得相对较好,这跟它是传统汽车厂商,有足量的销售产量息息相关。
那么我们来探究下为何如此?
1.汽车本身系统工程产品,汽车行业产业链太长,产品研发和产业整合难度大。
能重新完整开发设计一个智能系统的也只有特斯拉和GOOGLE两家,而且还存在种种问题,汽车行业的产业链条,配件就有数千种,4S店更是数为胜数,还牵涉到保险公司,与市政建设公路的智能化也密切相关。智能交通是一定需要政府的参与才能实现,智车汽车行业的发展也需要政府战略指导。就像“万众创新,大众创业“的政策支持和鼓励一样!
2.汽车厂商通讯标准各不统一,私有协议破解难度大。
OBD是汽车总线数据收集的一个关健设备,4S店维保故障判断,尾气的排查,保险公司取证数据都是需要从这个设备读取,但如果读取到发动机和车主更私密的信息需要破解OBD其私有协议,这个各个厂商各不统一,不像网络通讯都遵循TCP/IP协议,这也是数据孤岛形成的根本原因之一。
私有协议的破解本身除了有知识产权的风险以外,也存在由此引起的汽车安全事故责任的区分。一般破解私有协议的汽车也再享受不到原厂的服务。
3.传统汽车厂商之间以及与新生的互联网公司之间的利益纠葛。
汽车行业是一个庞大的产业链条,从整车到配件到服务再到保险,传统汽车厂商之前都是各自为营,市场本身就是冲突的,传统行业传统做法也不提畅共享。而共享是受互联网倒逼传统的结果。新生的互联网公司的智能硬件更多的是通过后置安装实现,这样只实现汽车部分功能的智能。导航仪,行车记录仪就是一种,通过公有协议将汽车运数据上传到手机APP也是一种。
对于数据的挖掘,需要云计算,大数据专业公司的技术支撑,但数据就像私家珍宝谁也不可能轻易共享,但传统汽车厂商很难短时间内能建立自已的大数据挖掘的人才队伍,这是两个完全不同的分工。
人对于车最本质的需要,是安全舒适轻松的从一个地方到另一个地方,自动驾驶和全自动化服务是智能汽车的终极目标,但安全却是需要反复验证的。
而实现这终极目标的关健是:
数据交互,人与车的交互,车与车的交互,车与路的交互,车与4S店,4S店与汽车厂商之前的交互。车与车主驾驶者的交互,充分的掌握汽车实时的运行数据,这些数据可以实时传给汽车服务商对汽车及时保养和安全检查。同时人车交互可以让驾驶者提前收到车况的预警信息,在事故发生时主动制动。人车交互语音信息是大家都在探索的方向。
车与车的交互就像智能人与人之间的交互一样,礼貌行车,安全行车,数据共享这将是车智能的源泉,从智能汽车到汽车智能的关健。车与路的交互依赖道路的智能化,车和智能交通设备之间的感应,车与4S店交互实现全自动化的服务,定期维护保养再也不需要人不离车,才能安全实现。
智能汽车大数据是汽车智能的前提和基础,是含金量足够丰富的黄金宝矿,但这需要我们准备好工具,储备好人才,携手向前,才能攫取这宝贵财富,才能享受到真正智能汽车的智慧生活!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15