京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为什么说大数据是智能汽车的基础_数据分析师考试
可能有人会说,智能汽车不是都已经实现了吗?正在热卖的特斯拉和已经广为人知的Google无人驾驶汽车不就是智能汽车的代表吗?
我的看法是:这仅是智能汽车的星星之火,大部分的汽车还仅仅局限在加装智能硬件实现,能重新完整开发设计一个智能系统的也只有特斯拉和Google两家,并且也还存在种种问题,没有普及开来。
真正要实现智能汽车的关健是智能汽车数据孤岛的互联互通,这是智能汽车行业发展最大障碍之一。
先来看看智能汽车大数据的生产,几乎所有路上跑着的汽车都在产生难以置信的庞大数据量,轮胎气压,到发动机转速,到油温和速度,刹车片在传感器的监测之下,汽车每小时能产生5-250GB的数据。谷歌无人驾驶汽车每秒产生约1G的数据,相当于每秒发送20万封纯文本电子邮件或用电脑上传100张高清数码相片,每一辆高度电气化集成的汽车都是一个庞大的数据库。
有了这么多大数据,按理说我们的汽车智能应该普及度如此之低?电动车,货运,商务,私家车应该都享受到大数据带来的智慧,关健的问题是这各个大数据是孤立互不相联的,智能汽车的大数据平台化严重不足,目数据平台化大众汽车做得相对较好,这跟它是传统汽车厂商,有足量的销售产量息息相关。
那么我们来探究下为何如此?
1.汽车本身系统工程产品,汽车行业产业链太长,产品研发和产业整合难度大。
能重新完整开发设计一个智能系统的也只有特斯拉和GOOGLE两家,而且还存在种种问题,汽车行业的产业链条,配件就有数千种,4S店更是数为胜数,还牵涉到保险公司,与市政建设公路的智能化也密切相关。智能交通是一定需要政府的参与才能实现,智车汽车行业的发展也需要政府战略指导。就像“万众创新,大众创业“的政策支持和鼓励一样!
2.汽车厂商通讯标准各不统一,私有协议破解难度大。
OBD是汽车总线数据收集的一个关健设备,4S店维保故障判断,尾气的排查,保险公司取证数据都是需要从这个设备读取,但如果读取到发动机和车主更私密的信息需要破解OBD其私有协议,这个各个厂商各不统一,不像网络通讯都遵循TCP/IP协议,这也是数据孤岛形成的根本原因之一。
私有协议的破解本身除了有知识产权的风险以外,也存在由此引起的汽车安全事故责任的区分。一般破解私有协议的汽车也再享受不到原厂的服务。
3.传统汽车厂商之间以及与新生的互联网公司之间的利益纠葛。
汽车行业是一个庞大的产业链条,从整车到配件到服务再到保险,传统汽车厂商之前都是各自为营,市场本身就是冲突的,传统行业传统做法也不提畅共享。而共享是受互联网倒逼传统的结果。新生的互联网公司的智能硬件更多的是通过后置安装实现,这样只实现汽车部分功能的智能。导航仪,行车记录仪就是一种,通过公有协议将汽车运数据上传到手机APP也是一种。
对于数据的挖掘,需要云计算,大数据专业公司的技术支撑,但数据就像私家珍宝谁也不可能轻易共享,但传统汽车厂商很难短时间内能建立自已的大数据挖掘的人才队伍,这是两个完全不同的分工。
人对于车最本质的需要,是安全舒适轻松的从一个地方到另一个地方,自动驾驶和全自动化服务是智能汽车的终极目标,但安全却是需要反复验证的。
而实现这终极目标的关健是:
数据交互,人与车的交互,车与车的交互,车与路的交互,车与4S店,4S店与汽车厂商之前的交互。车与车主驾驶者的交互,充分的掌握汽车实时的运行数据,这些数据可以实时传给汽车服务商对汽车及时保养和安全检查。同时人车交互可以让驾驶者提前收到车况的预警信息,在事故发生时主动制动。人车交互语音信息是大家都在探索的方向。
车与车的交互就像智能人与人之间的交互一样,礼貌行车,安全行车,数据共享这将是车智能的源泉,从智能汽车到汽车智能的关健。车与路的交互依赖道路的智能化,车和智能交通设备之间的感应,车与4S店交互实现全自动化的服务,定期维护保养再也不需要人不离车,才能安全实现。
智能汽车大数据是汽车智能的前提和基础,是含金量足够丰富的黄金宝矿,但这需要我们准备好工具,储备好人才,携手向前,才能攫取这宝贵财富,才能享受到真正智能汽车的智慧生活!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13