京公网安备 11010802034615号
经营许可证编号:京B2-20210330
全民大数据时代已不远_数据分析师考试
大数据的神奇令人惊叹,不过要面对超爆发式的数据增长,企业往往要支付超高额的数据存储费用,因此大数据产业仅仅集中在超大型、垄断型企业,不过在日前举行的2015上海大数据产业高端峰会上,肯睿中国区副总裁苗凯翔介绍了一种名为Hadoop的技术,通过重塑数据构架,它在一定程度上解决了大数据发展的成本之痛。而今,全球大数据生态圈中,Hadoop已经成为最为核心的技术。
存储成本阻碍大数据发展
数据量的快速增长,是IT业面临的重大挑战。统计显示,人类迄今为止存储的数据中,90%以上是最近两年新产生的,这种数据爆炸的趋势还将延续。“到2020年,互联网设备的总数将达到500亿部,数据总量将达到40ZB(1ZB=十万亿亿字节)。”苗凯翔说,这大约是人类现在需要处理信息量的10到20倍,换句话说,年均增长超过40%。
数据量快速增长,要求数据处理能力同步提高,但多数企业却因为预算不足而难以招架。以美国主要的四家银行为例,它们每年新增的数据量大致是40PB(1PB=100万GB),仅仅为存储这些数据,每年就必须增加3.2亿美元的投入。
“钱是主要问题。”苗凯翔说。事实上,为了应对40%的数据增速,企业在IT系统方面的预算必须以4%的年率增长,但实际上这块预算的增速很难超过1%。由于投入不足,银行不得不放慢推进大数据业务的速度,比如推广手机银行。
开源模式推动大数据发展
奥巴马政府把大数据比作“未来的新石油”,不过静静流淌的石油并没有价值,只有经过勘探、钻井、提炼、加工成石化产品,其商业价值才能体现。当下,关于大数据说得多做得少,正是由于开采工具不足。苗凯翔认为,要改变这一现象,必须从更深层次理解数据在当今时代意味着什么。
在过去,数据主要驻留在结构化的交易数据库里,结构是固定的,比如企业数据仓库用来产生运营报告;存储系统用来保留数据的有效和安全;搜索系统通过Web搜索引擎来寻找和探索信息……这都是一个个“地窖”,当需要计算时,就将“地窖”中的一部分数据送到计算机处。
不过这种方式只能进行少量、低频率的计算,想要应对当今的数据量、数据多样性和数据生成速度,旧的数据构架显然难以为继。“因为数据的属性已经改变,所以数据构架也一定要变。”苗凯翔说。
10年前,大数据概念还未问世,雅虎公司的技术人员就注意到了这个问题,并由此开发出基于互联网架构的数据处理技术,并以他3岁儿子的棕黄色大象玩具之名将其命名为Hadoop,如今这一开源技术已经成为大数据生态圈的核心。
“它是开源的,能够更高效地处理信息,而且支持标准化存储设备的无限扩容。”苗凯翔说。以国有四大银行为例,一个由53台PC机组成的大数据平台能够支持并发用户30万个,而此前的数量是300个。这样一套系统的使用成本不到原来的1/3。
小微企业为大数据开发注入新活力
Hadoop平台孕育了多家大数据商业开放公司,论规模和影响力,肯睿是其佼佼者,这家公司在全球已经拥有1300家合作伙伴,市值超过50亿美元。去年9月,肯睿(上海)软件有限公司完成注册,目前已有30多名员工。
一直以来,受限于高昂的服务器成本,大数据产业仅仅集中在电信、能源、证券、烟草等超大型、垄断型企业,利用开源性的Hadoop平台,就是淘宝店主也能享受到大数据带来的好处。“我们有免费版本,只要经过简单培训,并愿意共享你的数据,就能使用这个平台。”苗凯翔说。
小微企业的加入或许能为目前发展有些缓慢的大数据注入新的活力。因为根据以往全球的经验来看,企业规模稍大一些,就不太愿意分享自己的数据,而小企业主往往更愿意走出这一步。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16