京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS问卷加权处理:是偏心吗_数据分析师考试
调查问卷数据分析中经常遇到对数据进行加权的问题,什么是加权?沈浩老师博客中这样描述:让一些人变得比另一些人更重要!那为什么要加权?为了让调查数据在特征的分布上更接近实际情况。比如在会员数据中,男女比例是6:4,而调查问卷的比例是7:3,为了使调查结果更贴近真实,首先需要对问卷进行加权处理,让问卷的分布结构跟实际分布保持一致。
从概念上,加权:通过对总体中的各个样本设置不同的数值系数(即加权因子-权重),使样本呈现希望的相对重要性程度。通俗一些的公式:设计加权=某个变量或指标的期望比例/该变量或指标的实际比例。
看一个SPSS文件加权案例:
有一家数码产品专营店,它有一大批忠实的会员经常购买。为了更好的经营好自己即将要开设的网店,在会员中进行了一次购买习惯的问卷调查。在问卷的校验过程中,他们发现回收的问卷在人口特征的分布上与实际情况不符,会员中男女比例是6:4,而问卷中是7:3,并且男女会员实际在教育水平(1、2、3、4个档)的占比均为2:2:4:2。考虑到这两个因素可能对分析结果有较大的影响,现在需要对问卷数据进行加权处理,使得加权后的性别和教育水平能够符合实际比例。
1、汇总问卷数据,计算加权的权重
SPSS本身具有过硬的数据汇总功能,利用这些功能能够快速准确的对原始问卷数据进行大范围的汇总,主要在于获知不同男女性别在不同教育水平的人数,和参与问卷的总人数,然后根据“权重=变量的会员比例/该变量问卷比例”来计算最终的权重(本案例用这个公式)。
熟悉excel电子表格的话,也可以利用excel的透视表功能快速对问卷数据进行汇总并计算权重,这里略过。
表格的“会员比例”即男女会员在教育水平的占比2:2:4:2,男性0.6,女性0.4。最后一列即根据公式计算而得到的“权重”。
2、将权重数据合并到原始问卷数据中
这个步骤充分显示了SPSS合并数据文件的能力,SPSS合并数据有两种,一种是增加记录,另外一种是增加变量,我们现在需要把“权重”变量合并到原始问卷数据文件中,而且要求是和不同性别不同教育水平向匹配及对应的操作。
说得直白一点,其实相当于excel的vlookup功能,此时发现,spss的合并数据比vlookup更条件化,简单易于操作。这两种方法没有必要过多对比,你熟悉哪种选择哪种。最后的效果是:
3、SPSS加权个案,将“权重”作为频率变量
选择“数据”菜单最后一项“加权个案”,按照弹出的菜单提出来操作,点击确定后,加权处理则持续存在于接下来的各种分析操作中,如果不想使用加权处理,则必须取消加权,这一点需格外注意。
4、加权与不加权,我们来做一个比较
首先,我们看不加权时的问卷数据:
参与调查的男女比例大概是7:3,与实际会员比例6:4不符,教育程度的比例也不符合2:2:4:2。
接下来看加权处理后的效果:
此时,经过加权处理对样本进行校正均衡,使得调查数据在分布上完全和会员实际分布相符,达到分析的目的,基于这样一个靠近实际情况的数据然后再进行分析,其各项结论也更趋向于接近实际状况。
记住一点:加权也是篡改数据的方法!谨慎使用!
如果数据有“加权”,我们要明确地告诉客户:
为什么加权?
加权方案的实施过程;
加权对数据的影响,等等;
通常,我们应该:在数据报告过程中,在图表上同时标明“未加权”和“加权”的基数;在分析报告可灵活处理,但也应有清晰的、一致的标注;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06