
SPSS问卷加权处理:是偏心吗_数据分析师考试
调查问卷数据分析中经常遇到对数据进行加权的问题,什么是加权?沈浩老师博客中这样描述:让一些人变得比另一些人更重要!那为什么要加权?为了让调查数据在特征的分布上更接近实际情况。比如在会员数据中,男女比例是6:4,而调查问卷的比例是7:3,为了使调查结果更贴近真实,首先需要对问卷进行加权处理,让问卷的分布结构跟实际分布保持一致。
从概念上,加权:通过对总体中的各个样本设置不同的数值系数(即加权因子-权重),使样本呈现希望的相对重要性程度。通俗一些的公式:设计加权=某个变量或指标的期望比例/该变量或指标的实际比例。
看一个SPSS文件加权案例:
有一家数码产品专营店,它有一大批忠实的会员经常购买。为了更好的经营好自己即将要开设的网店,在会员中进行了一次购买习惯的问卷调查。在问卷的校验过程中,他们发现回收的问卷在人口特征的分布上与实际情况不符,会员中男女比例是6:4,而问卷中是7:3,并且男女会员实际在教育水平(1、2、3、4个档)的占比均为2:2:4:2。考虑到这两个因素可能对分析结果有较大的影响,现在需要对问卷数据进行加权处理,使得加权后的性别和教育水平能够符合实际比例。
1、汇总问卷数据,计算加权的权重
SPSS本身具有过硬的数据汇总功能,利用这些功能能够快速准确的对原始问卷数据进行大范围的汇总,主要在于获知不同男女性别在不同教育水平的人数,和参与问卷的总人数,然后根据“权重=变量的会员比例/该变量问卷比例”来计算最终的权重(本案例用这个公式)。
熟悉excel电子表格的话,也可以利用excel的透视表功能快速对问卷数据进行汇总并计算权重,这里略过。
表格的“会员比例”即男女会员在教育水平的占比2:2:4:2,男性0.6,女性0.4。最后一列即根据公式计算而得到的“权重”。
2、将权重数据合并到原始问卷数据中
这个步骤充分显示了SPSS合并数据文件的能力,SPSS合并数据有两种,一种是增加记录,另外一种是增加变量,我们现在需要把“权重”变量合并到原始问卷数据文件中,而且要求是和不同性别不同教育水平向匹配及对应的操作。
说得直白一点,其实相当于excel的vlookup功能,此时发现,spss的合并数据比vlookup更条件化,简单易于操作。这两种方法没有必要过多对比,你熟悉哪种选择哪种。最后的效果是:
3、SPSS加权个案,将“权重”作为频率变量
选择“数据”菜单最后一项“加权个案”,按照弹出的菜单提出来操作,点击确定后,加权处理则持续存在于接下来的各种分析操作中,如果不想使用加权处理,则必须取消加权,这一点需格外注意。
4、加权与不加权,我们来做一个比较
首先,我们看不加权时的问卷数据:
参与调查的男女比例大概是7:3,与实际会员比例6:4不符,教育程度的比例也不符合2:2:4:2。
接下来看加权处理后的效果:
此时,经过加权处理对样本进行校正均衡,使得调查数据在分布上完全和会员实际分布相符,达到分析的目的,基于这样一个靠近实际情况的数据然后再进行分析,其各项结论也更趋向于接近实际状况。
记住一点:加权也是篡改数据的方法!谨慎使用!
如果数据有“加权”,我们要明确地告诉客户:
为什么加权?
加权方案的实施过程;
加权对数据的影响,等等;
通常,我们应该:在数据报告过程中,在图表上同时标明“未加权”和“加权”的基数;在分析报告可灵活处理,但也应有清晰的、一致的标注;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28