
大数据2015年或成IBM核心业务_数据分析师考试
12月24日消息,据国外媒体报道,随着2014年年终的日子越来越近,IBM的股价却仍然在地位徘徊。过去十年时间里,IBM的收益的增长速度曾经令人惊叹。然而进入2014年之后IBM的业绩就开始衰败,一些市场分析人士对于2015年IBM的表现也并无太高的期许。在笔者看来,IBM在日益激烈的行业竞争中已经有所落后,不过令人感到安慰的IBM正在积极的进行自我转型。展望2015年,笔者认为IBM还是会面临一系列发展良机,而IBM能否抓住机遇实现业绩上的突破值得期待。
IBM上一次进行大规模的转型还要追溯到20世纪90年代早期,当时IBM的主营业务由于受到PC和服务器市场所发生的剧变而面临巨额亏损,面对此种情况IBM临阵换帅迎来了一位新的首席执行官郭士纳(Louis V. Gerstner),在新掌门人的带领之下IBM迅速向软件和服务业调整,这也成为如今IBM在全球软件市场拥有一定话语权的根本原因。
眼下全球IT市场的变化格局同20世纪90年代之时有着明显的区别。云技术已经成为改变IT时代发展的推手之一,而同样是面对行业市场的剧变,这一次IBM并不会暴露出同25年前一样的短板。当年全球硬件市场的飞速发展使得IBM不得不跟上整个行业的变革脚步,事实证明“被拖着走”的IBM表现并不令人满意。如今面对云技术市场的进步,IBM主动自我调整以完成迎合市场需求,这也就决定了未来IBM将会面临更多的发展机会。
笔者认为大数据将成为IBM业务增长最显著的领域。大数据无非是海量数据的收集以及分析,事实上IBM已经推出了大数据市场产品——Watson。Watson如今通过云端向用户提供服务,而与此同时其还在其他诸多行业领域发挥着作用。今年10月IBM同Twitter签署合作协议,IBM将Twitter所掌握的用户数据纳入到Watson之中,由此商业客户可以通过Watson对大量数据的分析发现过往他们从未注意过的用户消费习惯等等。Watson另一项成功应用于实际的例子就发生在本月。IBM在本月月初同美国退伍军人事务部签署合作协议,后者将使用Watson对所掌握的全美退伍军人病历数据进行分析以便向患者提供更高质高效的医疗服务。IBM在评价同美国退伍军人事业部的合作时强调,美国退伍军人事业部的病历数据规模每三年便会增加一倍,对于如此大规模的数据进行分析唯有Watson才有能力承担。
今年年初IBM推出Watson之时,IBM首席执行官罗睿兰曾经表示,IBM为Watson所制定的发展目标是在10年之内使其成长为百亿美元级别的业务。罗睿兰的论调看似有些“放卫星”。眼下Watson在IBM众多业务之中所占份额还只是少数,不过笔者认为Watson的发展潜力不可小觑。根据市场调查机构IDC公布的数据显示,从今年开始知道2018年全球大数据技术和服务市场规模年度增幅将维持在26%的高位,而届时整个市场的价值预计将达到415亿美元。
笔者想要提醒投资者一点的是“罗马可不是一天建成的”,IBM的转型不可能再短时间内就收到成效。笔者预计IBM在2015年可能仍然会遭受一些业绩增长方面的压力,尽管在明年IBM旗下的Watson和大数据业务会签下更多订单 ,但这对于整个IBM的发展来说只是杯水车薪。2015年IBM的业绩来源将仍由传统软件和服务所占据,而硬件业务也会继续面临较大的发展压力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22