京公网安备 11010802034615号
经营许可证编号:京B2-20210330
中国大数据六大技术变迁记_数据分析师考试
集“Hadoop中国云计算大会”与“CSDN大数据技术大会”精华之大成, 历届的中国大数据技术大会(BDTC) 已发展成为国内事实上的行业顶尖技术盛会。从2008年的60人Hadoop沙龙到当下的数千人技术盛宴,作为业内极具实战价值的专业交流平台,每一届的中国大数据技术大会都忠实地描绘了大数据领域内的技术热点,沉淀了行业实战经验,见证了整个大数据生态圈技术的发展与演变。
2014年12月12-14日,由中国计算机学会(CCF)主办,CCF大数据专家委员会协办,中科院计算所与CSDN共同承办的 2014中国大数据技术大会(Big Data Technology Conference 2014,BDTC 2014) 将在北京新云南皇冠假日酒店拉开帷幕。大会为期三天,以推进行业应用中的大数据技术发展为主旨,拟设立“大数据基础设施”、“大数据生态系统”、“大数据技术”、“大数据应用”、“大数据互联网金融技术”、“智能信息处理”等多场主题论坛与行业峰会。由中国计算机学会主办,CCF大数据专家委员会承办,南京大学与复旦大学协办的“2014年第二届CCF大数据学术会议”也将同时召开,并与技术大会共享主题报告。
本次大会将邀请近100位国外大数据技术领域顶尖专家与一线实践者,深入讨论Hadoop、YARN、Spark、Tez、 HBase、Kafka、OceanBase等开源软件的最新进展,NoSQL/NewSQL、内存计算、流计算和图计算技术的发展趋势,OpenStack生态系统对于大数据计算需求的思考,以及大数据下的可视化、机器学习/深度学习、商业智能、数据分析等的最新业界应用,分享实际生产系统中的技术特色和实践经验。
大会召开前期,特别梳理了历届大会亮点以记录中国大数据技术领域发展历程,并立足当下生态圈现状对即将召开的BDTC 2014进行展望:
追本溯源,悉大数据六大技术变迁
伴随着大数据技术大会的发展,我们亲历了中国大数据技术与应用时代的到来,也见证了整个大数据生态圈技术的发展与衍变:
1. 计算资源的分布化——从网格计算到云计算。 回顾历届BDTC大会,我们不难发现,自2009年,资源的组织和调度方式已逐渐从跨域分布的网格计算向本地分布的云计算转变。而时至今日,云计算已成为大数据资源保障的不二平台。
2. 数据存储变更——HDFS、NoSQL应运而生。 随着数据格式越来越多样化,传统关系型存储已然无法满足新时代的应用程序需求,HDFS、NoSQL等新技术应运而生,并成为当下许多大型应用架构不可或缺的一环,也带动了定制计算机/服务器的发展,同时也成为大数据生态圈中最热门的技术之一。
3. 计算模式改变——Hadoop计算框成主流。 为了更好和更廉价地支撑其搜索服务,Google创建了Map/Reduce和GFS。而在Google论文的启发下,原雅虎工程师Doug Cutting开创了与高性能计算模式迥异的,计算向数据靠拢的Hadoop软件生态系统。Hadoop天生高贵,时至今日已成为Apache基金会最“Hot”的开源项目,更被公认为大数据处理的事实标准。Hadoop以低廉的成本在分布式环境下提供了海量数据的处理能力。因此,Hadoop技术研讨与实践分享也一直是历届中国大数据技术大会最亮眼的特色之一。
4. 流计算技术引入——满足应用的低延迟数据处理需求。 随着业务需求扩展,大数据逐渐走出离线批处理的范畴,Storm、Kafka等将实时性、扩展性、容错性和灵活性发挥得淋漓尽致的流处理框架,使得旧有消息中间件技术得以重生。成为历届BDTC上一道亮丽的风景线。
5. 内存计算初露端倪——新贵Spark敢与老将叫板。 Spark发源于美国加州大学伯克利分校AMPLab的集群计算平台,它立足于内存计算,从多迭代批量处理出发,兼容并蓄数据仓库、流处理和图计算等多种计算范式,是罕见的全能选手。在短短4年,Spark已发展为Apache软件基金会的顶级项目,拥有30个Committers,其用户更包括IBM、Amazon、Yahoo!、Sohu、百度、阿里、腾讯等多家知名公司,还包括了Spark SQL、Spark Streaming、MLlib、GraphX等多个相关项目。毫无疑问,Spark已站稳脚跟。
6. 关系数据库技术进化—NewSQL改写数据库历史。 关系数据库系统的研发并没有停下脚步,在横向扩展、高可用和高性能方面也在不断进步。实际应用对面向联机分析处理(OLAP)的MPP(Massively Parallel Processing)数据库的需求最迫切,包括MPP数据库学习和采用大数据领域的新技术,如多副本技术、列存储技术等。而面向联机事务处理(OLTP)的数据库则向着高性能演进,其目标是高吞吐率、低延迟,技术发展趋势包括全内存化、无锁化等。
立足扬帆,看2014大数据生态圈发展
时光荏苒,转眼间第2014中国大数据技术大会将如期举行。在技术日新月异的当下,2014年的BDTC上又可以洞察些什么?这里我们不妨着眼当下技术发展趋势:
1. MapReduce已成颓势,YARN/Tez是否可以再创辉煌? 对于Hadoop来说,2014是欢欣鼓舞的一年——EMC、Microsoft、Intel、Teradata、Cisco等众多巨头都加大了Hadoop方面的投入。然而对于众多机构来说,这一年却并不轻松:基于MapReduce的实时性短板以及机构对更通用大数据处理平台的需求,Hadoop 2.0转型已势在必行。那么,在转型中,机构究竟会遭遇什么样的挑战?各个机构如何才能更好地利用YARN所带来的新特性?Hadoop未来的发展又会有什么重大变化?为此,BDTC 2014特邀请了Apache Hadoop committer,Apache Hadoop Project Management Committee(PMC)成员Uma Maheswara Rao G,Apache Hadoop committer Yi Liu,Bikas Saha(PMC member of the Apache Hadoop and Tez)等国际顶尖Hadoop专家,我们不妨当面探讨。
2. 时过境迁,Storm、Kafka等流计算框架前途未卜。 如果说MapReduce的缓慢给众多流计算框架带来了可乘之机,那么当Hadoop生态圈组件越发成熟,Spark更加易用,迎接这些流计算框架的又是什么?这里我们不妨根据BDTC 2014近百场的实践分享进行一个侧面的了解,亦或是与专家们当面交流。
3. Spark,是颠覆还是补充? 与Hadoop生态圈的兼容,让Spark的发展日新月异。然而根据近日Sort Benchmark公布的排序结果,在海量(100TB)离线数据排序上,对比上届冠军Hadoop,Spark以不到十分之一的机器,只使用三分之一的时间就完成了同样数据量的排序。毫无疑问,当下Spark已不止步于实时计算,目标直指通用大数据处理平台,而终止Shark,开启Spark SQL或许已经初见端倪。那么,当Spark愈加成熟,更加原生的支持离线计算后,开源大数据标准处理平台这个荣誉又将花落谁家?这里我们一起期待。
4. 基础设施层,用什么来提升我们的网络? 时至今日,网络已成为众多大数据处理平台的攻坚对象。比如,为了克服网络瓶颈,Spark使用新的基于Netty的网络模块取代了原有的NIO网络模块,从而提高了对网络带宽的利用。那么,在基础设施层我们又该如何克服网络这个瓶颈?直接使用更高效的网络设备,比如Infiniband能够带来多少性能提升?建立一个更智能网络,通过计算的每个阶段,自适应来调整拆分/合并阶段中的数据传输要求,不仅提高了速度,也提高了利用率。在BDTC 2014上,我们可以从Infiniband/RDMA技术及应用演讲,以及数场SDN实战上吸取宝贵的经验。
5. 数据挖掘的灵魂——机器学习。 近年来,机器学习领域的人才抢夺已进入白热化,类似Google、IBM、微软、百度、阿里、腾讯对机器学习领域的投入也是愈来愈高,囊括了芯片设计、系统结构(异构计算)、软件系统、模型算法和深度应用各个方面。大数据标志一个新时代的到来,PB数据让人们坐拥金山,然而缺少了智能算法,机器学习这个灵魂,价值的提取无疑变得镜花水月。而在本届会议上,我们同样为大家准备了数场机器学习相关分享,静候诸位参与。
而在技术分享之外,2014年第二届CCF大数据学术会议也将同时召开,并与技术大会共享主题报告。届时,我们同样可以斩获许多来自学术领域的最新科研成果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06