
大数据能否勾勒个人信用图像_数据分析师考试
使用全球“街机”iPhone人群的信用指数不抵魅族和华为手机的拥有者?你没看错,这是来自P2P平台拍拍贷最新发布的《个人无抵押小额信贷市场发展报告》中的数据。利用互联网五花八门的社交数据,来评价个人的信用级别——眼下,这种大数据的风控模式正在国内悄然流行起来。
粉丝多100,信用风险降一成
“对拍拍贷而言,目前互联网行为、社交关系、网络黑名单数据信息已经占P2P个人无抵押小额信贷的信用评分也即纯线上风控信用审核的60%,而传统的信贷审核信息只占40%。”拍拍贷CEO张俊告诉记者,“一般而言,传统银行考察借款人70至80个数据维度,我们仅围绕互联网层面选取的维度就已经超过400个。”
在拍拍贷的报告中,在年龄与信用的表现上,30岁至40岁的群体信用最高,40岁至50岁群体次之,90后群体信用最低;而在学历与信用关系的表现中,本科及以上学历人群信用最好,大专学历人群次之,高中学历人群信用高于初中及以下人群信用指数。有意思的是,用户填身份证号或者银行卡号的速度与信用逾期关系密切。根据大数据分析,填写速度在13秒的借款者信用情况更优,填写速度每慢一秒或者快一秒,逾期风险概率就会上升。
互联网的社交数据也与信用“亲密相关”——拥有100个粉丝的借款者可以被认为信用基本可信,同时借款人每增加100个粉丝,其借款逾期风险概率就下降10%。手机号使用年限越长,其逾期的风险概率越低。其中手机号使用一年以下的借款者,就较使用一年以上的借款者,逾期风险概率提升20%。而从使用手机的种类来看,使用魅族手机的人群信用指数最高,华为和三星用户的信用指数紧随其后,全球“街机”iPhone的用户则排在中等位置。另外,小米用户信用指数居中下水平,低于使用Vivo和OPPO这两大国产机的人群,酷派和联想用户信用指数排名靠后。
大数据不能取代线下信息
目前,阿里、腾讯、京东由于坐拥电商的交易数据、社交信息数据等,都在“试水”利用大数据来搭建信用评价体系。但事实上,基于社交网络上的数据来进行信用评分、描绘一个人的画像,在国际上也没有成功的先例。那么,互联网社交数据究竟靠谱吗?
作为统计、概率领域的权威专家,美国普林斯顿大学运筹与金融工程系主任范剑青日前在复旦大学管理学院接受记者专访时表示:“大数据肯定对于信用评估非常有帮助,比如在网上购买了什么东西、社交网络上有哪些朋友、你的朋友的违约程度,把这些相关数据整合在一起,显然可以勾勒出一个人基本的信用情况。但我认为,这也不太可能完全取代传统的数据收集方法,因为人们在网上的行为跟平时在网下的行为不完全是一样的。”
范剑青指出,针对个人信用的评价,美国至少有3家公司在收集相关数据,还有一个独立的公司把这些数据综合在一起。其实,非常关键的就是数据收集,因为人的行为是很多样化的。“在这方面,中国可能刚刚开始起步,最重要的还是央行的征信系统。但我相信,线上与线下的结合可以对于个人信用做出更为合理的评价。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22