京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据要牢记的5大经验教训_数据分析师考试
1、 要赢得利益相关者的信任
大数据正确的分析方法是业务而不是技术,在开始部署大数据应用之前,赢得业务部门的信任,增强其信息至关重要。首先,利益相关者会帮助你获取所 需要的资源,包括团队、资金和必要的数据资源,让你的项目取得成功。其次,任何数据分析只有被付诸实践才是有效的。如果主要管理者不愿意基于大数据分析结 果对业务进行改进,那么所有的投入都会被浪费。
因此,增强利益相关者的信心将是当务之急。
2、专注于那些对于企业至关重要的问题
对于很多大的机构或者企业而言,如果能够进行数据归档并进行离线,采用几乎免费的集群数据库将会带来巨大的成本节省,这是非常普遍的。
如果能够对非结构化数据进行迁移,将会帮助企业节省大量的购买授权的成本,而部署和管理这样的系统,就需要投入进行系统架构,而所节省的授权成本恰好可以用于系统架构的开销。
在这种情况下,给中型企业的建议就是不要更多关注投资回报率,不要过多关注成本节省。获得最大的商业利益,是需要集中重点加以阐述的口头禅。
3、培养数据科学家
要将大数据应用付诸实践,对于人才的需求首当其冲。对于拥有大量资源的大机构这尚且是一个难题,对于中等企业就更是如此了。众多的市场研究表明,对于人才的需求难以在短时间内解决。与其花重金招聘,莫不如内部挖潜。
可以挑选那些充满了激情的数据库管理人员(DBA)已经愿意学习的业务分析人员,采取适合步骤对他们进行培养。
4、正确采用本机分析技术
拥有一个企业级大数据处理平台并不意味着企业具有驾驭意义数据的能力,拥有处理大数据集群是一件非常好的事情,但问题在于你是否能够以正确方式来确保能够获预期的商业价值呢?
尽管拥有高端大数据平台,但许多企业发现还是很难获取和分析数据。鉴于大数据已经成为整个IT业热点,因此市场上会有各种产品和方案供应商,但这些产品解决方案的效果还有待观察。
5、协作是口头禅
企业业务部门领导、销售主管以及职能部门人,如果缺乏必要的IT知识将很难认同大数据分析的结果。很快就可以发现,尽管具有前所未有的创新,然而相关人员不敢将其付诸应用。
中等企业通过协调IT和业务线,这会帮助克服可能碰到的路障、避免那些妨碍成功的陷阱。通过这种方式,不仅可以帮助企业适当管理好数据,同时也 可以确保能够在正确时间获取到正确的数据。 数据分析具有至关重要的价值,这些数据贵在发现,并证明有效,这将有助于企业进行正确的决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06