京公网安备 11010802034615号
经营许可证编号:京B2-20210330
怎样用数据分析占领市场先机_数据分析师考试
数据分析的价值取决于它能如何帮助你占领市场先机。作为初创公司,所有的数据应该被用于你对公司不同阶段设立的目标上。
举个栗子。一个快递公司通常会检测平均送达每件货物的时间。这看上去是很关键的数据,但如果没有充分的上下文(毕竟收货人可能在一个街区外,也可能在几百公里外),这也是没有意义的。另一个角度上,平均送货时间也没有收货人的整体满意度重要。因此,你必须确保你的分析囊括了正确的数据。
请列举量化你需要的结果:你希望你的客户体验是怎么样的?一些常见的成功数据分析会基于销售或用户转化率(即如果客户做了XX事情以后会购买或者成为用户),转化需要的时间,以及让客户产生负面体验的比例。你会希望第一个比例很高,而后两者降低。
通常来说,媒体网站会全然以网页浏览量论英雄。但现在他们也开始注意一个叫做“注意力停留时长”的指标:人们在某个页面专注多长时间,是否注意到某些字句,是否在上下拖动页面,是否有看视频,等等。他们不仅仅实在看用户在某个页面停留了多少时间,他们更需要知道用户被页面中的哪些部分吸引,且积极专注地浏览了多少时间。这样可以帮助媒体网站设计新的标题,页面设计和内容选择,以延长这样的注意力停留时长。这样,他们可以革新网站设计的方式,来更好地打动他们的受众。
另一个重点是监测留存用户。成功的数据分析可以同时涵盖日常运营数据以及活动数据,并横向分析。如果你仅仅看日常运营数据,你能指导那些人会回访你的网站,哪些人可以达成复购。但你还需了解哪些回访网站却没有复购的人群: 为什么他们不愿意再次购买?这样的问题可以通过介乎运营与活动数据分析来找到答案。活动数据会告诉你哪些没有购买行为的客户按照何种顺序浏览网站,注意到了什么,点击了什么,在离开网站前做了什么。当你跟踪这个线路,你可以了解如何修改这种行为,来增加他们下次访问时购买的可能性。
为了设计最适合你的数据篮子,你可以参考以下三个建议:
1)寻找一类合适的用户行为
2)测算多少比例的受众会有这一类的用户行为
3)测试这一类用户行为是不是包含了重要的信息
有时候,发明一个新的数据记录篮子可以促成对公司很大的改变。
拿Venmo(一个纽约的小额支付平台)举个栗子吧。有段时间,公司的支付APP团队听说很多本想向朋友索取款项的用户不慎把钱反而支付给了朋友,因为“索取款项”和“支付款项”的按钮放在一块很容易按错。然而公司并不知道这个问题有多普遍,是否值得公司重新设计用户界面。为了更好地做决策,他们设计了一个新的数据系统来检测这个索取/支付失误有多常见。他们把“A向B付款后不久B双倍将款项付给了A”这种奇怪的支付行为全都找了出来。结果显示,这个情况经常发生。所以在下次的产品更新中,他们修复了这个问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06