京公网安备 11010802034615号
经营许可证编号:京B2-20210330
八部电影帮你看懂大数据_数据分析师考试
如果你是位数据分析行业的专家,你肯定以为我们会提到《点球成金》(Money Ball),很遗憾以下将要介绍的电影貌似与大数据无关,但能帮助我们从八个不同角度解读大数据的未来,以及,作为IT经理的我们的未来。
一、《V客帝国》
(V for Vendetta 2005-James McTeigue)
在大数据的世界里,V并非指“仇杀”(Vendetta),而是著名的3V定律:
Velocity速度——以接近实时的速度处理数据产生报告,而不是像过去那样漫长的休假结束后才能看到报告。
Volume容量——在不断膨胀的海量数据中依然能发现有价值的信息。
Variety多样性——能处理各种数据源(结构化、半结构化、非结构化数据)
二、《速度与激情》
(Fast and the Furious 2001-Rob Cohen)
在未来数据驱动的企业中,任何一项业务计划能否成功都需要依赖飞速的大数据分析,企业间比拼的是大数据跑车的极速性能,如果你能比竞争对手更快了解一个业务计划的可行性并快速决策,你的将成为快公司,而那些不够Fast的CIO们,迎来的将是老板的Furious。
三、《淘金记》
(The Gold Rush 1925-Charles Chaplin)
你也许不止一次在讨论会上听说:数据将是未来世界经济的“原油”。大数据是个大金矿,但是对于大多数企业来说,通往大数据致富的道路铺满荆棘而不是鲜花。最大的障碍不是技术,而是来自企业向数据驱动型企业文化的痛苦转型,其艰难程度堪比卓别林在阿拉斯加啃鞋底。
四、《飞屋环游记》
(Up 2009)
Pixar出品的最感人的电影非《飞屋环游记》莫属。影片为我们展示了在云端漫游的浪漫和快乐。是的,弹性云基础设施能很好地应对大数据的规模增长。如果你过于关注大数据硬件的可扩展性,那么说明你还停留在解决技术支撑层面的事情,而不是大数据的商业价值。Amazon和Joyent这样的弹性云服务商能帮企业忘掉大数据的技术性问题。
五、《象人》
(The elephant Man 1980)
大数据世界也有一头风骚无比的黄色大象——Hadoop,曾经是Google的一个项目,开源后成为大数据基础设施的基石。Hadoop还提供一系列相关配套工具,将Hadoop的潜能发挥到极致,例如Ahache Mahout——机器学习,和Apache Hive——在Hadoop之上搭建数据仓库,并与MongoDB等NoSQL数据库形成天作之合。
六、《泰坦尼克号》
(Titanic 1997)
没有对隐藏的未知因素进行建模和分析就做出的决策将可能是灾难性的。大数据给你看得见的信息,同时还能从数据中发现你看不见的东西。分析海量数据之间的“模式”、“关联”..你会发现很多水面下的信息内幕。例如,汽车颜色与保险费用之间的关系。大数据时代之前,大多数的企业管理都盲人骑瞎马,或者像泰坦尼克号那样黑夜中在冰山中穿行。
七、《少数派报告》
(Minority Report 2002)
《少数派报告》中,阿汤哥工作的犯罪预防部门采用的基本是预测型分析技术,这也是大数据的杀手应用,未来的优秀企业领导者无需借助管理艺术、或者类似玛雅巫师的管理哲学,机器学习和数据挖掘技术将成为管理者的数字水晶球。
八、《老无所依》
(No country old men 2007 )
这个故事有点残酷,但事实就是如此,大数据需要全新的技能组合,在大数据面前甚至80后都不再年轻。老一辈数据库专家们需要洗心革面,全身换血,掌握最新的数据存储和处理技术。此外,大数据的“多样性”还意味着大量数据将来自互联网的API或SPARQL等端点,利用这些数据你还需要掌握Python、PHP、Java等技术
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01