
八部电影帮你看懂大数据_数据分析师考试
如果你是位数据分析行业的专家,你肯定以为我们会提到《点球成金》(Money Ball),很遗憾以下将要介绍的电影貌似与大数据无关,但能帮助我们从八个不同角度解读大数据的未来,以及,作为IT经理的我们的未来。
一、《V客帝国》
(V for Vendetta 2005-James McTeigue)
在大数据的世界里,V并非指“仇杀”(Vendetta),而是著名的3V定律:
Velocity速度——以接近实时的速度处理数据产生报告,而不是像过去那样漫长的休假结束后才能看到报告。
Volume容量——在不断膨胀的海量数据中依然能发现有价值的信息。
Variety多样性——能处理各种数据源(结构化、半结构化、非结构化数据)
二、《速度与激情》
(Fast and the Furious 2001-Rob Cohen)
在未来数据驱动的企业中,任何一项业务计划能否成功都需要依赖飞速的大数据分析,企业间比拼的是大数据跑车的极速性能,如果你能比竞争对手更快了解一个业务计划的可行性并快速决策,你的将成为快公司,而那些不够Fast的CIO们,迎来的将是老板的Furious。
三、《淘金记》
(The Gold Rush 1925-Charles Chaplin)
你也许不止一次在讨论会上听说:数据将是未来世界经济的“原油”。大数据是个大金矿,但是对于大多数企业来说,通往大数据致富的道路铺满荆棘而不是鲜花。最大的障碍不是技术,而是来自企业向数据驱动型企业文化的痛苦转型,其艰难程度堪比卓别林在阿拉斯加啃鞋底。
四、《飞屋环游记》
(Up 2009)
Pixar出品的最感人的电影非《飞屋环游记》莫属。影片为我们展示了在云端漫游的浪漫和快乐。是的,弹性云基础设施能很好地应对大数据的规模增长。如果你过于关注大数据硬件的可扩展性,那么说明你还停留在解决技术支撑层面的事情,而不是大数据的商业价值。Amazon和Joyent这样的弹性云服务商能帮企业忘掉大数据的技术性问题。
五、《象人》
(The elephant Man 1980)
大数据世界也有一头风骚无比的黄色大象——Hadoop,曾经是Google的一个项目,开源后成为大数据基础设施的基石。Hadoop还提供一系列相关配套工具,将Hadoop的潜能发挥到极致,例如Ahache Mahout——机器学习,和Apache Hive——在Hadoop之上搭建数据仓库,并与MongoDB等NoSQL数据库形成天作之合。
六、《泰坦尼克号》
(Titanic 1997)
没有对隐藏的未知因素进行建模和分析就做出的决策将可能是灾难性的。大数据给你看得见的信息,同时还能从数据中发现你看不见的东西。分析海量数据之间的“模式”、“关联”..你会发现很多水面下的信息内幕。例如,汽车颜色与保险费用之间的关系。大数据时代之前,大多数的企业管理都盲人骑瞎马,或者像泰坦尼克号那样黑夜中在冰山中穿行。
七、《少数派报告》
(Minority Report 2002)
《少数派报告》中,阿汤哥工作的犯罪预防部门采用的基本是预测型分析技术,这也是大数据的杀手应用,未来的优秀企业领导者无需借助管理艺术、或者类似玛雅巫师的管理哲学,机器学习和数据挖掘技术将成为管理者的数字水晶球。
八、《老无所依》
(No country old men 2007 )
这个故事有点残酷,但事实就是如此,大数据需要全新的技能组合,在大数据面前甚至80后都不再年轻。老一辈数据库专家们需要洗心革面,全身换血,掌握最新的数据存储和处理技术。此外,大数据的“多样性”还意味着大量数据将来自互联网的API或SPARQL等端点,利用这些数据你还需要掌握Python、PHP、Java等技术
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13