
旅游大数据与精细化运营初探_数据分析师考试
本文初步解读什么是旅游大数据、什么是旅游精细化运营。
一、什么是旅游大数据
从广义上讲,旅游大数据是指旅游行业的从业者及消费者所产生的数据,包括景区、酒店、旅行社、导游、游客、旅游企业等等所产生的数据,以及影响旅游行业的其他领域所产生的数据,如宏观经济数据、交通数据、社会舆论数据等等。其中,最为重要、也是应用价值最大的一块则是消费者即游客的数据。那么,游客数据为什么“大”。
首先,游客量基数大。据统计,2014年我国国内旅游人数达到36.3亿人次,出境旅游人数达到1.09亿人次。
其次,游客属性信息数据大。每一位游客都对应多个属性信息,包括年龄、性别、常住地、职业、兴趣偏好等等,如此产生的游客属性信息是N倍于游客人数的数据量。
第三,游客日常行为信息数据大。在日常生活中,每一位游客无时无刻不在产生信息,通过百度搜索个人需求、通过淘宝上网购物、通过微信进行社交,而所有的日常行为,都会无时无刻被互联网存储、记录。
第四,游客旅游行为数据大。一次完整的旅游过程包括吃、住、行、游、购、娱等六大要素,游客可能通过携程订购酒店机票、通过同程购买门票、通过百度搜索资讯、通过地图进行导航和定位等等,而所有的旅游行为产生的数据,也都会被存储、记录。
二、旅游大数据来源有哪些
客观来讲,旅游大数据从应用价值来说,其重要性排序分别是BAT三大巨头、通信运营商、旅游领域互联网公司、景区及企业积累的自身数据等。
1、BAT巨头
百度是老牌的互联网公司,由于百度老大李彦宏的重视,百度在大数据领域突飞猛进,引领国内大数据行业的发展。据了解,百度搜索引擎平均每天的搜索量达到上百亿次,而每一次游客的搜索请求,构成了百度大数据,通过游客的搜索请求,可以预测旅游市场。同时,百度地图在国内市场占有率接近七成,远超高德地图,而游客每一次通过百度地图定位、导航,都会被存储、记录,为此,百度地图可以知晓每一位游客的实际游览轨迹。另外,百度整合了旗下50多条产品线的数据,包括百度搜索、百度地图、百度糯米等等,游客在每个百度产品上所产生的数据都会被百度知晓,并通过数据挖掘、分析,产生每一位游客的数据画像。目前,百度和旅游领域的大地云游科技有限公司进行了跨界合作,在旅游行业大数据应用方面进行了深入探索。
阿里的数据主要是基于淘宝、天猫等购物网站所产生的消费数据,通过游客的购物行为,阿里可以判断每一位用户的消费能力、收入水平、消费偏好等。目前,阿里大数据的重点依然放在其淘宝、天猫等传统企业上面,在旅游领域涉足较浅。
由于拥有QQ和微信两大王牌产品,腾讯在大数据领域,拥有价值较高的社交数据、消费数据、游戏数据等。通过腾讯数据,可以知晓每位用户的社会关系、性格禀赋、兴趣爱好、隐私绯闻等等,但由于腾讯一直表现低调,在大数据方面尚未见动静,但大数据应用却一直进行。可以说,在大数据领域,腾讯是一只潜伏的巨鳄。
2、通信运营商
通信运营商数据优势在于其渗透率高,作为垄断行业,移动、联通、电信三大运营商数据占领市场100%,同时用户在打电话、使用网络发送消息或导航,每时每刻都会产生数据,但目前运营商对数据挖掘和应用方面较为滞后,在旅游行业,运营商主要将数据应用在智慧旅游、智慧景区中的数据中心建设,用来监测游客量及游客移动性。
3、其他互联网公司(在线旅游网站、新浪微博)
携程、去哪儿、去啊、途牛等在线OTA企业,也积累了大量的用户数据,包括酒店、机票、景区门票、旅行社等的交易数据,同时新浪微博也存在大量的社交、舆论数据,对旅游而言有应用价值,但由于受用户数量及使用频次的限制,其应用价值较上述公司较小。
4、景区及企业自有数据
景区及旅游企业通过自有软硬件的建设,可以采集、存储自身的游客数据,包括票务平台数据、监控数据及物联网数据等,通过将自身的数据结合上述互联网公司及运营商数据,可以发挥更大的价值。
三、什么是精细化运营
旅游精细化运营,是指通过大数据,对景区及旅游企业进行全面、细致、动态、高效的运营管理。旅游精细化运营体现三个方面:1、精准化运营;2、多元化运营;3、敏捷化运营。
1、精准化运营
景区精准化运营,体现在改变传统的基于经验、定性的决策方式,而是通过大数据对景区管理、运营、营销提供量化、精准决策。例如,通过大数据,可以对游客量进行精准预测及景区内部游客量实时精准管理,并可以对游客客源市场进行精准定位和精准市场营销等。
2、多元化运营
随着我国经济的发展,旅游产业由观光旅游模式向观光、休闲、度假等多元化旅游方式转变。而传统的旅游盈利方式,往往是通过门票以及简单的观光项目等进行盈利,盈利模式单一、简单粗暴且不可持续,而基于大数据,可以识别景区多元化的旅游市场,并根据游客年龄、兴趣、偏好有针对性的进行旅游市场细分及项目开发,从而多途径、多渠道的增加盈利模式。
3、敏捷化运营
由于消费者消费能力逐渐增强、旅游信息不透明程度的下降,游客的行为逐渐变得难以预测,旅游市场瞬息万变,传统的景区运营往往对突发的管理及市场变化束手无策,而通过大数据,可以实时、敏捷的调整运营方案及运营策略,从而提高管理及运营效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04