京公网安备 11010802034615号
经营许可证编号:京B2-20210330
旅游大数据与精细化运营初探_数据分析师考试
本文初步解读什么是旅游大数据、什么是旅游精细化运营。
一、什么是旅游大数据
从广义上讲,旅游大数据是指旅游行业的从业者及消费者所产生的数据,包括景区、酒店、旅行社、导游、游客、旅游企业等等所产生的数据,以及影响旅游行业的其他领域所产生的数据,如宏观经济数据、交通数据、社会舆论数据等等。其中,最为重要、也是应用价值最大的一块则是消费者即游客的数据。那么,游客数据为什么“大”。
首先,游客量基数大。据统计,2014年我国国内旅游人数达到36.3亿人次,出境旅游人数达到1.09亿人次。
其次,游客属性信息数据大。每一位游客都对应多个属性信息,包括年龄、性别、常住地、职业、兴趣偏好等等,如此产生的游客属性信息是N倍于游客人数的数据量。
第三,游客日常行为信息数据大。在日常生活中,每一位游客无时无刻不在产生信息,通过百度搜索个人需求、通过淘宝上网购物、通过微信进行社交,而所有的日常行为,都会无时无刻被互联网存储、记录。
第四,游客旅游行为数据大。一次完整的旅游过程包括吃、住、行、游、购、娱等六大要素,游客可能通过携程订购酒店机票、通过同程购买门票、通过百度搜索资讯、通过地图进行导航和定位等等,而所有的旅游行为产生的数据,也都会被存储、记录。
二、旅游大数据来源有哪些
客观来讲,旅游大数据从应用价值来说,其重要性排序分别是BAT三大巨头、通信运营商、旅游领域互联网公司、景区及企业积累的自身数据等。
1、BAT巨头
百度是老牌的互联网公司,由于百度老大李彦宏的重视,百度在大数据领域突飞猛进,引领国内大数据行业的发展。据了解,百度搜索引擎平均每天的搜索量达到上百亿次,而每一次游客的搜索请求,构成了百度大数据,通过游客的搜索请求,可以预测旅游市场。同时,百度地图在国内市场占有率接近七成,远超高德地图,而游客每一次通过百度地图定位、导航,都会被存储、记录,为此,百度地图可以知晓每一位游客的实际游览轨迹。另外,百度整合了旗下50多条产品线的数据,包括百度搜索、百度地图、百度糯米等等,游客在每个百度产品上所产生的数据都会被百度知晓,并通过数据挖掘、分析,产生每一位游客的数据画像。目前,百度和旅游领域的大地云游科技有限公司进行了跨界合作,在旅游行业大数据应用方面进行了深入探索。
阿里的数据主要是基于淘宝、天猫等购物网站所产生的消费数据,通过游客的购物行为,阿里可以判断每一位用户的消费能力、收入水平、消费偏好等。目前,阿里大数据的重点依然放在其淘宝、天猫等传统企业上面,在旅游领域涉足较浅。
由于拥有QQ和微信两大王牌产品,腾讯在大数据领域,拥有价值较高的社交数据、消费数据、游戏数据等。通过腾讯数据,可以知晓每位用户的社会关系、性格禀赋、兴趣爱好、隐私绯闻等等,但由于腾讯一直表现低调,在大数据方面尚未见动静,但大数据应用却一直进行。可以说,在大数据领域,腾讯是一只潜伏的巨鳄。
2、通信运营商
通信运营商数据优势在于其渗透率高,作为垄断行业,移动、联通、电信三大运营商数据占领市场100%,同时用户在打电话、使用网络发送消息或导航,每时每刻都会产生数据,但目前运营商对数据挖掘和应用方面较为滞后,在旅游行业,运营商主要将数据应用在智慧旅游、智慧景区中的数据中心建设,用来监测游客量及游客移动性。
3、其他互联网公司(在线旅游网站、新浪微博)
携程、去哪儿、去啊、途牛等在线OTA企业,也积累了大量的用户数据,包括酒店、机票、景区门票、旅行社等的交易数据,同时新浪微博也存在大量的社交、舆论数据,对旅游而言有应用价值,但由于受用户数量及使用频次的限制,其应用价值较上述公司较小。
4、景区及企业自有数据
景区及旅游企业通过自有软硬件的建设,可以采集、存储自身的游客数据,包括票务平台数据、监控数据及物联网数据等,通过将自身的数据结合上述互联网公司及运营商数据,可以发挥更大的价值。
三、什么是精细化运营
旅游精细化运营,是指通过大数据,对景区及旅游企业进行全面、细致、动态、高效的运营管理。旅游精细化运营体现三个方面:1、精准化运营;2、多元化运营;3、敏捷化运营。
1、精准化运营
景区精准化运营,体现在改变传统的基于经验、定性的决策方式,而是通过大数据对景区管理、运营、营销提供量化、精准决策。例如,通过大数据,可以对游客量进行精准预测及景区内部游客量实时精准管理,并可以对游客客源市场进行精准定位和精准市场营销等。
2、多元化运营
随着我国经济的发展,旅游产业由观光旅游模式向观光、休闲、度假等多元化旅游方式转变。而传统的旅游盈利方式,往往是通过门票以及简单的观光项目等进行盈利,盈利模式单一、简单粗暴且不可持续,而基于大数据,可以识别景区多元化的旅游市场,并根据游客年龄、兴趣、偏好有针对性的进行旅游市场细分及项目开发,从而多途径、多渠道的增加盈利模式。
3、敏捷化运营
由于消费者消费能力逐渐增强、旅游信息不透明程度的下降,游客的行为逐渐变得难以预测,旅游市场瞬息万变,传统的景区运营往往对突发的管理及市场变化束手无策,而通过大数据,可以实时、敏捷的调整运营方案及运营策略,从而提高管理及运营效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28