京公网安备 11010802034615号
经营许可证编号:京B2-20210330
电子商务如何做数据分析_数据分析师考试
消费者网上购物的平均时间,拿去年的6月跟今年的6月比较,从20分钟减少到了17分钟。另一方面,客户停留在网站上的时间减少的同时,多数电商的转化率只有0.5%左右。
在注意力越来越分散的今天,99.5%的客户是流失掉的,电商要如何去了解这群客户的购物行为特征,并且使之转化为订单量。
困境:客户停留时间在减少。
时间是一个很稀缺的资源。
对于电商来讲,人均浏览网页的时间,就是正在变得稀缺的竞争资源。
从图二可以发现,每天覆盖的人数,购物网站(包括淘宝)的流量增长是68%,但是人均当天在线浏览的时间(在电商这边)减少了16%。网上购物的时间,拿上一年的6月跟今年的6月比较,则从20分钟减少到了17分钟。
我们细致地看一下各家网站(见图三)会发现同样的情况:京东、卓越、当当、凡客、梦芭莎,这几家代表性的B2C中,我们发现大部分流量是增长的,但是如果 我们看一下这些网站人均的当日浏览时间,京东上一年是10分钟左右,今年则只有8分钟左右。那么,这是由于现在的网站找东西更有效,所以浏览网站的时间更 少一点,还是其他原因?
其实,我们可以用其他的数据挖掘一下,到底是网站的有效性小了,还是总的时间少了?我觉得其中一个很重要的东西是每个网站在争取一个顾客进来以后,它在8分钟里做了哪些事情。
电商的眼球经济只有17分钟,这是总的平均数,也即平均每个网民在电子商务网站会停留17分钟。淘宝商城、京东商城,如果我们真的把它们浏览的时间拿走的话,你会发现其他的网站所拿到的流量就会很小。
而用户停留在网站上的有效购物时间减少的同时,电商的转化率却普遍不是很高。
从访问到购物车,平均来讲,100个人进来,只有4.5个人把东西放到购物车,有96个人不会把东西放到购物车,那这96个人干吗呢?
另外,我们可以看到,京东商城下单到在线支付的百分比是29.4%,凡客诚品是29%,一号店是8.3%。
追寻流失客户购物行为特征
先让我们看一下图五的数据。
图五这个数据蓝色部分显示的35%,是指只有35%的人是今天来、今天买的;65%的人是以前来、今天才买的。这里的65%说的是新客户,不是老客户,新 客户今天来到这个网站,今天就买了。从下往上第二格红色,是昨天来、今天买的客户;绿色的是2-6天前来的、今天才买的客户;最高的那个橙色是21天之前 来的、今天买的顾客。当然,这个数据,每个行业都有差别,不完全一样。
从数据我们可以发现,客户从访问页面到最终付款,所用的时间是不一样的。有的用户是第一天下单,隔了一个星期才付款。尤其是一些非标准、无品牌的产品,消费者比价情况普遍,导致从访问到下单购买时间更长。(我为此访谈过部分国内电商,数据基本一致但百分比不一样。)
所以,电商业者会发现,当天来到网站的人不能完全用漏斗(图六)来看,因为他来之前压根就没想买你的东西,他只是过来看一下这个产品便宜还是贵。面对这样的顾客,你就更需要知道他们到了网站之后做了什么事情。
首先,网站可以问,客户在下单之前浏览过哪些页面和产品,他的浏览历史非常重要。
其次,要了解清楚,正在网站上浏览的客户,哪些是明确要来买东西的,哪些只是随便来逛逛的,以及他们从什么入口进入;
第三,没有购买的用户,到底看了多少产品页,多少放进购物车没有付款,多少是一个产品页都没有看的;
第四,多少客户把产品放进购物车隔天才付款的。
此外,非常重要的是,客户登录网站首页之后,除了有40%的弹出率之外,剩下60%的用户分别是从搜索、分类购物和引导购物等渠道进入,作为电商来讲,应该了解他们从哪个渠道进入到产品页面、三个渠道进入之后付款的比例分别是多少,从中找出问题所在。
这一思路与网站整体的架构相关,目前国内关注还比较少,但是先可以尝试用这个思路去看存在的问题。
最后,最想告诉读者的是,用这些简单的方法,就能知道没有付款的消费者的购物行为,只有了解他们的购物行为特征,才可以让这溜走的99.5%的用户产生付款,从而提升网站转化率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14