京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据为王的年代,BI正躲在大数据背后“掘金”_数据分析师考试
提起大数据,想起马云说过的一个段子,他说有些企业家很焦虑,期待政府能给出一些政策,让经济好起来。与此同时,一些经济学家也在分析未来经济走势balabala。马云的观点是,如果一个企业家在等政府和经济学家来决定命运,那么这样的企业半数已经离死不远了。因为“春江水暖鸭先知”,企业比政府和经济学家更能感受到市场的变化。阿里巴巴的成功靠的不是政府的政策,更不是听了哪个经济学家的分析与判断。
话虽这样说,但毕竟不是所有的企业都是阿里,跟着政策的节奏走,大方向终不会错。再者说,政府发力大数据也是人心所向,越来越多的公司正在向数据型企业转型。所以,当国家发文要拥抱大数据的时候,大数据概念不只是热,而是热得发烫。
大数据成为兵家必争之地,这点毋庸置疑。但放眼市场,你会发现,正在“闷声发财”的不是大数据,而是早已被大数据光芒掩盖了的“BI”。
“最近一家上市公司做BI产品选型,5家PK剩两家:永洪BI和国际排名第一的Tableau。今天最后一轮性能测试完毕,基于数千万条数据的结果显示:友商响应速度平均3分钟,永洪BI响应速度3-10秒,快20倍。以前很多人认为国产的就是落后的,不过现在已经进入全面超越的时代了。”永洪科技CEO何春涛发微信朋友圈后,引来无数粉丝点赞。
永洪科技是一家名副其实的创业型公司,但服务过的客户却不小,包括中国移动、中国电信、中信银行、浪潮集团、宝宝树、人人车、途家网、百程旅行网、艾瑞咨询等业内知名公司。也因此迎来经纬中国抛来的绿色橄榄枝,先后同美国经纬连续做了数千万的A轮和A+轮融资。本应该没落的BI行业,永洪科技却做得风生水起。
前不久,永洪科技还公布了与北京航空航天大学软件学院(以下简称北航软件学院进行战略合作的信息,北航和永洪科技将成立BI联合实验室,共同培育国内大数据分析领域的专业人才。
北航曾经与威盛电子在集成电路领域展开合作,与AMD共建科技创新中心,与微软(日本)合作建立日文应用软件专业实验室,与SAP建立ERP实验室,也在移动与云计算领域与联想集团、HTC、RIM、阿里巴巴、开心网、创新工场等展开合作,但以大数据的名誉与北航合作的,永洪科技是第一家,也是目前为止唯一一家企业。可见,在市场眼里,BI的光芒从未暗淡,大数据不但没有让BI终结,反而让其更加光芒四射。
目前,与永洪科技一样活跃在市场的上的BI提供商还有很多,包括亦策软件、珠海奥威软件、博易智软、悦策科技、帆软软件、亿信华辰等等。或许他们的产品没有SAP Business Objects,IBM Cognos, Microstrategy, Oracle BIE那样庞大和昂贵,但这些小型创业公司正在以其简单、灵活、易用、性价比高等特点赢得市场青睐。
其实,BI能获得“第二春”,完全是历史发展的必然。我们都知道,BI(即商务智能)并不是一个新鲜事物,整个市场在几年前就已经被SAP、IBM 、Oracle、微软等巨头IT企业占领。BI最早被应用于大部分央企,这些企业建完ERP、CRM、 OA 、SCM之后,有了比较完善的信息化基础系统,但大量分散、独立存在的数据出现时,业务人员很难看懂,所以BI顺势而生,帮助业务及管理人员充分掌握、利用各种结构化数据,并辅助决策。
尽管过去的BI也有今天的大数据功能,包括数据集成、数据仓库、数据挖掘、数据分析等,但大部分企业并没有用起来,只把BI当做简单的报表工具。当大数据时代来临,企业基础架构已经全部铺完,BI的刚需才真正被唤醒。这应该是BI能躲在大数据背后掘金的根本原因
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07