京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据之后,谁将为时代冠名_数据分析师考试
在一次互联网思维的学习讨论会上,大家当然讨论了大数据时代和大数据的思维,当然,大数据思维是互联网思维的特点之一。
“您每天敲击一次键盘,都会成为这个时代的大数据的一部分”。
这是“中国之声”的广告词。
“大数据”因互联网而成为这个时代的一个显著特征,并成功的赢取了时代金矿的美誉。数据的价值得到空前的重视,“谁掌握了数据,谁就掌握了未来”。“数据是重要的资产”。“数据只有开放互联才能成为大数据,才能发掘出价值”。当人们津津乐道大数据是如何成为时代的新宠时,似乎各行各业都离不开大数据了。
而事实上,大数据给我们到底带来了什么呢?我们究竟在大数据上获得了哪些利益呢?未来又能获得什么利益呢?尽管全球的IT精英都在绞尽脑汁的发掘和鼓吹大数据的价值,乃至国家政策也受此影响。但如果对上述问题没有得到清晰的答案,这样的影响多少存在逻辑上的盲目。
理智地思考:大数据为何产生?
因为有了计算机,才有数据。数据是计算机的食物和产物。
因为计算机爆发式的增长,导致作为其食物和产物的数据爆发式增长。
计算机的联网,自然带来其食物和产物的相互纠连。
计算机为什么要吃进数据和吐出数据?因为数据里面有我们人类需要的信息。
数据的纠连,背后是信息的关联。
即使在没有计算机的年代,信息的关联原本就存在,构成我们人类的信息世界。
那时的信息世界虽然运行缓慢,相互阻隔比较严重,但至少是清澈见底,让我们气定神闲的。
计算机在信息世界的出现,相当于蒸汽机在工业世界中的出现。
工业革命带来的是什么?产品生产效率的大幅提高和自然资源的快速消耗及生态环境的剧烈破坏,当然,还有科技的进步。
那么,信息革命带来的是?信息处理效率和范围不断提升和数据的快速膨胀,有谁想到过,和工业革命之对生态环境的剧烈破坏,信息革命对应的影响是什么?如果是破坏,破坏了什么?如果我们想都没想到过这个破坏确实可能存在,如果实际是存在的,会意味着什么?意味着人类在未觉醒的状态下,在拼命发展着一种对自己的某个世界可能带来巨大影响的技术。不像工业革命带来对自然环境的污染和破坏可以让人类直接得到相应的惩罚而觉醒。信息革命如果能带来破坏,则一定是对人类信息世界的生态环境的剧烈破坏。
信息革命可能如何来破坏人类信息世界的生态环境的呢?
在原来人类的信息世界的生态环境中,虽数据量不大,但数据的信息密度大。虽数据复制传输慢,但垃圾数据少。自从有了计算机,特别是有了互联网,数据对信息的吞噬是极其野蛮和不受约束的。数据量是很大,数据的类也很多,关联的范围也很广,但信息的密度却急剧下降。由于数据的传输和复制的速度急速提高,垃圾数据更是野蛮生长不受控制。这便是对大数据的来由的另一种看法。
确实,大数据的产生,给我们带来了在前所未有的宏观层次得到数据证实的信息,但是,这些信息,实际和人类凭直觉得到的信息也无太多的差别。相反,庞大的数据支撑下的“数据说话”的思维,让人类越来越丧失了宏观的直觉和思考的能力。
所以,大数据时代,实际是个什么时代?对这点的清醒认知,对把控人类技术发展的下一个时代确实非常重要。倘若迷糊,下一个时代是“大失控”时代,就不仅仅是科技作品中的预言了。
倘若我们清醒过来,认识到大数据的危害,我们则可能利用大数据技术升级,反过来治理大数据的危害,正象我们在后工业革命时期所做的那样,环保和生态事业在新的技术支撑下,得以发展。
倘若我们做到了后者,那么,大数据时代的下一个时代,必然是个“大整合”的时代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05