京公网安备 11010802034615号
经营许可证编号:京B2-20210330
建立大数据思维中不得不看的四个挑战_数据分析师考试
大数据的发展速度有目共睹,想要在竞争社会中走的更远,人人都需要建立大数据思维。那么在建立大数据思维中,有哪些挑战呢?
第一,大数据应用和商业回报间的矛盾。
未来的大数据应用一定是可定制的、可在云上打包的服务,即将业务、数据、分析能力多面定制,一起打包。企业需要可快速部署和有明确ROI 回报的应用,这涉及到数据的质量和丰富度及业务人员对数据的依赖度。这需要企业内各个部门的有效协作,并规避无法确定的风险,比如分析结果的不确定性,业务场景的复杂性,人员的能力缺失等。
传统手段,比如通过社交媒体、邮件、网络文本等获得的数据量非常庞大,但解破这些数据的关系和价值却给企业带来巨大挑战。企业希望成为数据的主人,但在辨析数据的有效性、能带来哪些商业回报,以及如何帮助决策等方面却缺乏有效工具。大数据魔镜是一款高端的免费数据可视化分析工具,是企业们不错的选择。
第二,海量数据与核心数据间的矛盾。
要做大数据,首先要了解自己的企业,或者企业所在的行业的核心是什么。调研中我们发现,有很多企业在竞争过程中,最终不是被现有竞争对手打败,而是被很多潜在未知的竞争对手打败的。
举例来说,大部分人都认为亚马逊是做电商的,但其实亚马逊现在最主要的收入来自云服务,也就意味着亚马逊的核心数据(价值)是云服务。只有在此基础上,亚马逊建立的大数据才是有效的、服务于战略的。
第三,内部数据与外围数据间的矛盾。
企业所获取的数据,很大一部分是内部数据,这让企业面对另一个挑战,如何让内部数据与外围相关数据产生联系并使之成长。只有让内外部数据的交融在用户场景中,才能为业务用户描绘更精准的业务发展空间。
第四,规律发现和规律失效间的矛盾。
调研显示,从大数据应用总结出的规律来看,建立失效预警是特别必要的。当企业通过大数据分析发现一个规律,并在现实中应用时,必须要设立一些预警指标。当指标达到一定程度,既表明之前发现的规律已经失效,必须发现新的规律、建立新相关指标,这称为数据价值的有效性。
没有根据实际应用场景的变化而及时更新的数据,挖掘得再多都是无谓的浪费,熟练应用失效预警,企业才能培养起团队对数据真实有效的敏感性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06