京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据引发的六种全新商业模式(1)-数据分析师考试
人们认为“数据是新型石油”,一种需要企业加以利用和改进的天然资源。这是事实还是炒作?Mohamed Zaki解释说,虽然许多公司已经从大数据中获益,但这也提出了严峻的挑战。
政府机构已经宣布加快大数据研究,而且根据Gartner公司的调查,2013年64%的公司正在投资——或打算投资大数据技术。Gartner公司也指出虽然企业相信大数据的优势,许多公司也正在从大数据中获取利用价值。但问题是他们往往倾向于数据收集方面的技术,而没有思考大数据如何才能创造价值。
大数据正在为大型公司和小型企业创造价值。成熟企业在很多领域利用大数据技术提升他们的业务和服务,另一方面,初创企业也正在利用大数据开发许多创新产品和商业模式。
在剑桥服务联盟,一个制造部门的研究所,我们与众多行业中的杰出企业接触时,看到与大数据有关的重要机会和挑战。
以一家制造、销售、租赁其产品并提供保养和维修服务的公司为例。它的产品包括收集了大量数据的传感器,使公司能够进行远程监测并诊断问题。
如果该数据与现有的业务数据,先进的工程分析手段和前瞻性的商业情报相结合,该公司就可以提供一个“状态监测服务”,能够分析和预测设备故障。对于客户来说,意外的宕机就会成为过去,维修成本会降低和两次服务之间的间隔期也会延长。智能分析,甚至可以告诉企业如何更高效地使用设备。原始设备制造商(OEM)和经销商认为这种方法是提高他们的配件和维修业务的新方式而且也能增加配件的销售。它也能加强与现有客户的关系,吸引需要保养维修服务的新客户。
在一个完全不同的领域,一场教育革命正在进行中。大数据正在巩固一种新的被称为“能力教育”的学习方式,这种教育模式正在美国的高校推广。一批高校利用大数据技术个性化地开发他们的课程,每个学生都可以随时随地学到他们喜欢的课程并取得进步。
以前的课程模式是,学生们必须在学年开始的时候到学校报到,不管他们的个人水平如何,他们都要努力学习课程直到毕业。在新的数据驱动模式下,大学将能够监控和衡量学生的表现,看看他们需要多长时间完成特定的课程任务,成绩如何。课程设计考虑到学生的喜好,他们的成绩和他们可能遇到的困难。对于学生来说,这是适合他们需求的一个更加灵活的学习方法,并让他们有机会更快地毕业。对于大学来说,这意味着提供更好的素质教育,提高学生的成绩,并能够更有效地安排他们的工作人员,符合他们的技能和利益。
为了获取有价值的大数据,企业必须能够捕捉,存储,分析,可视化和解释这些大数据。而这些步骤没有一个是简单的。
其中的一个主要障碍是缺乏“数据文化”,数据文化是指数据完全嵌入在组织思想和实践中。而且公司也面临着一系列数据管理和处理的挑战。
例如,状态监测服务依赖于卫星系统或数字电话系统的数据传输:有时这些技术根本没有覆盖。大多数组织都有大量的数据以不同的格式存储在不同的系统中:使这些数据汇集在一起非常困难。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06