
九个能够改变世界的高价值大数据应用_数据分析师考试
随着企业开始利用大数据,我们每天都会看到大数据新的奇妙的应用,帮助人们真正从中获益。大多数企业和社会都会受到大数据分析的影响,但大数据是究竟是如何帮助增加价值呢?
下面让我们来看看9个高价值大数据应用,这些都是大数据分析应用的关键领域:
1. 理解、定位客户,以及为客户提供服务
这是现在最大的最广为人知的大数据应用领域之一。这里的重点是使用大数据来更好地了解客户以及他们的行为和喜好。企业都热衷于收集社交媒体数据、浏览器日志、文本分析和传感器数据,来更全面地了解他们的客户。在大多数情况下,这里的总的目标是创建预测模型。例如美国零售商target通过利用大数据分析,他们现在可以非常准确地预测他们的客户什么时候想要小孩。另外,通过使用大数据,电信公司现在可以更好地预测客户流失,沃尔玛可以更好地预测哪些产品将会热卖,汽车保险公司能够了解其客户的驾驶水平,而政府则能够了解选民的偏好。
2. 理解和优化业务流程
大数据也越来越多地用于优化业务流程。通过利用从社交媒体数据、网络搜索趋势以及天气预报挖掘出的预测信息,零售商能够优化其库存。其中广泛应用大数据分析的业务流程是供应链或配送路线优化。在这方面,地理定位或无线电频率识别传感器被用来追踪货物或送货车,并通过整合实时交通数据来优化路线。人力资源业务流程也能够通过使用大数据分析来改进。这包括优化人才招聘,以及使用大数据工具衡量公司文化和人员参与度。
3. 大数据改善每个人的生活
大数据不仅适用于企业和政府,也适用于我们每一个人。我们现在可以利用从可穿戴设备(例如智能手表或智能手链)生成的数据,这让我们可以追踪我们的热量消耗、睡眠模式等。我们还可以利用大数据分析来寻找爱情,大多数网上交友网站都使用大数据工具和算法来帮助我们寻找最合适的对象。
4. 提高医疗和研发
大数据分析的计算能力使我们能够在几分钟内解码整个dna,并让我们可以找到新的治疗方法,同时更好地理解和预测疾病模式。就像所有人能够受益于智能手表和可穿戴设备产生的数据一样,大数据同样可以帮助病人更好地治病。未来的临床实验将不会仅限于小样本,而是将服务于每个人。大数据技术已经被用来监视早产婴儿以及患病婴儿。通过记录和分析每次心跳以及呼吸模式,医生现在可以在任何身体不适症状出现之前预测24小时的情况。这样,医生就可以更早地救助患病婴儿。
5.提高体育成绩
现在很多运动都已经开始采用大数据分析技术。例如用于网球鼻塞的ibm slamtracker工具,我们使用视频分析来追踪足球或棒球比赛中每个球员的表现,而运动器材中的传感器技术(例如篮球或高尔夫俱乐部)让我们可以获得对比赛的数据以及如何改进。很多精英运动队还追踪比赛环境外运动员的活动-通过使用智能技术来追踪其营养状况以及睡眠,以及社交对话来监控其情感状况。
6. 优化机器和设备性能
大数据分析还可以让机器和设备变得更加智能和自主化。例如,大数据工具被用来运行谷歌的自驾车。丰田的普锐斯配有相机、gps以及强大的计算机和传感器,来在道路上安全驾驶,而不需要人类的干预。大数据工具还可以用来优化智能电网。我们甚至可以使用大数据工具来优化计算机和数据仓库的性能。
7. 改善安全和执法
大数据被广泛应用于提高安全和执法过程。大家肯定都知道美国国家安全局(nsa)在使用大数据分析来对抗恐怖主义活动,甚至用来监控我们的生活。其他企业则使用大数据技术来检测和阻止网络攻击。警察还可以使用大数据工具来捉住罪犯,甚至预测犯罪活动,信用卡公司使用大数据来检测欺诈性交易。
8. 改进和优化的城市和国家
大数据还被用来改善我们的城市和国家的很多方面。例如,它让城市可以基于实时交通信息、社交媒体和天气数据来优化交通情况。很多城市正在试点大数据分析技术,试图转变为智能城市,将交通基础设施和公共设施程序都加入进来。
9. 金融交易
大数据在金融行业的应用主要是在金融交易。高频交易(hft)是大数据应用比较多的领域。其中,大数据算法被用来作出交易决定。现在,大多数股权交易都是通过大数据算法进行,这些算法越来越多地开始考虑社交媒体网络和新闻网站的信息来在几秒内做出买入和卖出的决定。
上述9个领域是大数据应用最多的领域,当然,随着大数据工具越来越普及,还有很多其他大数据应用领域,以及很多新的应用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22