京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“四步走”玩转大数据营销_数据分析师考试
在互联网上有条关于大数据的段子:大数据相当于青少年谈性,每个人都在谈论,但没有人知道怎么做,又以为大家都在做,所以只好宣称自己也在做。虽然犀利,但很契合当下大家对于大数据的认知。2014年,是大数据必须“接地气”的时候了!而根据学者分析,营销最有可能成为大数据应用在今年的突破口,率先“落地开花”,因为现在所说的跟互联网相关的大数据,以受众和内容的关系为主。也就是说,现阶段大数据研究,重点在于与营销理论和诉求的关联。
百度迁徙:为商家绘出“藏宝图”
刚过去的春节,让人见识到百度这个亿级数据库借助“春运”这个全球最大规模的人类迁徙活动发挥出的巨大能量。当“迁徙大军”遇到了互联网大数据,百度迁徙根据每个人每一次位置的改变,把旅途中的焦急等待变成了可实时监控的动态数据。全国最热的迁徙路线是哪里?迁入北京的头名城市是哪里?迁出北京的人们都去哪儿了?
这些在以往只能根据铁道部售票数量和区间站选择才能得到粗略统计的春运的核心信息,在百度大数据那里,成了像小葱拌豆腐一样简单获取甚至自动生成的数据分析报告。由于春节的缘故,在此期间发生的食品、礼品采购行为与这些数据息息相关,这便为商家提供了极其精确的信息。从这个意义上讲,百度迁徙大数据在为商家绘制一幅“藏宝图”。
玉兰油25岁装:传统巨头的数据思维
仅仅提取了春运期间的部分数据,就已经撬起了春节这个巨大的商机。但你所看到的,只是冰山一角。目前,百度与宝洁、可口可乐这些全球顶级品牌巨头的合作已经取得了较好的成果。
拿宝洁玉兰油产品为例,百度在帮助其进行受众分析时发现,很多消费者对玉兰油产品的年龄定位比较模糊,不同地域对品牌的关注点、兴趣点有明显不同。为此,双方开放各自优势资源,着眼于深度研究用户行为大数据,帮助宝洁进行“品牌探针”、“消费者画像”分析,找到TA的地域分布、兴趣爱好、媒体接触点等背后隐藏的信息。
具体而言,关于玉兰油的大数据品牌认知分三步:第一、以搜索行为数据为基础提取消费者洞察;第二、以ROI为导向,探讨网络媒体投放甚至全媒体整合投放效果评估体系;第三、整合百度全平台数据,深度挖掘,灵活聚合,还原网络消费者 360度“全相”。通过消费者分析和画像,百度对玉兰油购买人群进行了年龄、地域分析,发现玉兰油的关注人群对玉兰油适用人群认知混乱,由此玉兰油调整营销策略,特别推出了一款标注适合25岁女性使用的产品,结果热销。
关键时刻:企业大数据营销四步走
追本溯源,百度大数据营销是以消费者需求为中心、通过捕捉消费者访问行为中的“关键时刻”来构建营销分析模型的一套方法论体系。而这套方法论与整合营销之父唐•舒尔茨的“SIVA”理论高度契合。上个世纪90年代,舒尔茨提出了SIVA理论,强调客户购买产品或服务的四个关键要素S、I、V、A。Solutions—消费者寻求解决问题的方案、Information—消费者寻找与解决方案相关的信息、Values—消费者衡量各种解决方案的价值、Access—消费者解决问题的入口。
作为互联网第一入口,百度完整记录了SIVA的全过程,能够深刻洞察消费者需求。无论是迁徙地图为商家带来巨大商机,还是宝洁玉兰油这个由百度亲自“接生”的婴儿,都在活生生的诠释百度“关键时刻”这一营销方法论。首先,百度可以帮助品牌了解消费者希望获得的问题解决方案;其次,百度将丰富的品牌信息展现给消费者;再次,百度能够提供竞品信息使消费者可以比较其价值所在;最后,告诉消费者在哪凭借什么手段可以获得解决问题的方法。综上所述,“百度MOMENTS”着重探讨影响消费者行为的关键时刻,而这些关键时刻正是蕴含在SIVA所提到的不同决策阶段中。百度不仅可以帮助品牌捕捉这些关键时刻,还能够提供相应的产品,让品牌与消费者实时地沟通和对话,建立起紧密的联系。
目前,百度与可口可乐、百事可乐、恒大冰泉等正在展开深入合作,通过大数据,为他们提供整合式、精准化的互联网营销方案。同时,与传统企业巨头在互联网营销领域的合作,将为行业树立新的标杆,也将为其他企业的互联网转型指明道路。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14