京公网安备 11010802034615号
经营许可证编号:京B2-20210330
别说忙,没工夫看书。。。你那刷FB/朋友圈的工夫腾出来,保证每周啃下一本”,小编身边总充斥着这样的‘训话’。。。
额,奈何我每天的工作离不开从社交媒体中获取信息,甭管有毒没毒,一得空就扎进SNS已经成了我的‘条件反射’。其实病入膏肓的又何止我一人;据了解,全球互联网用户平均每天花在社交媒体上的时间足足有两个半钟头!点击、翻页、评论、分享……这些行为的集合,勾勒着虚拟世界中每一个鲜活的个体 —— 那是每个人的一面镜子。
你知道么,每当科技分析师煞有介事地探讨‘大数据’,10个里有9个说的都是‘社交网络’中流出的用户行为数据。不由分说,今天的社交大佬们有个‘杀很大’的机会:可以更好地理解用户的人脉关系、兴趣爱好、消费习惯以及人口统计特征。如果真能玩儿转这些数据,介些巨无霸SNS就能为用户提供无比贴合的个性化内容,以及无与伦比的综合体验,同时,广告商们还能更精准地定位到那些真正对他们产品感冒的用户。到那会儿,赚钱的赚钱,享受的享受,每个人就都High了。
小编今天为大家粗数一下,世界上最大的几个社交网络各握有哪些要命的用户数据?它们的意义何在?
先说说‘图谱’是神马?字典里说,这俩字泛指按类编制的图集,其实英文就是Graph。社交网络发展至今,中国专家很喜欢用‘图谱’形容不同SNS掌握的不同类别的庞大数据网络;听上去颇为高大上不说,还跟‘大数据’与生俱来的‘难以驾驭性’有点相得益彰的效果。呵呵,不好意思,小编只能解释到这儿了。。。
Facebook的兴趣图谱:月活跃用户超过12亿,这些人平均每月花7个小时在Facebook上。以往,人们总把Facebook上的数据宝库看成一个‘社交图谱’,或者说一个关系管理体系。你的家人,朋友,同事,认识的人,想认识的人、甚至是想回避的人……全在上面;Facebook握有你最完整的的关系图。但是成年后的Facebook又有另一番面貌,它现在平均每天处理25亿条内容分享(大概每人两条),它的like(点赞)按钮每天被按下超过27亿次…….专家们更倾向于把今天的Facebook看成一个‘兴趣图谱’;它告诉你某某某在意的是什么,是一个通向人们喜好的窗口。
Google+的知识图谱:你可以把Google+看成是Google搜索的补充和延伸,它能告诉你:人们‘已经知道些啥’,以及‘想要知道些啥’。Google+的NB之处在于,它令Google宝贵的搜索数据更具‘人性’,帮助Google理解人们为啥搜索这个或者内个信息,背景、情由各是什么等等。此外,反过来看,Google+也是Google搜索的一个有力助手:+1键(连同其他G+数据)已经成为决定Google搜索结果中网页排名的重要因素。http://cda.pinggu.org/
Youtube的娱乐图谱:大伙儿喜欢看什么片子?听什么曲子?每个人感兴趣的音乐、视频、电影、电视节目都是哪些?Youtube将每个人的欣赏品味汇编成了一个庞大的娱乐图谱。从电影制片厂,到唱片公司,再到有线电视台,娱乐产业中的重头参与者们都在目不转睛地盯着这个指南针。每个月,超过10亿个独立用户会造访Youtube,使它成为名符其实的世界第二大社交媒体。2013年12月的数据显示,Youtube用户平均每月花费6个小时在这个平台上观看视频(而Facebook用户平均每月在其平台的视频观看时间还不足1小时)。
LinkedIn的职业图谱:LinkedIn掌握的价值数据在于每个人的工作经历和职业人脉;注意,这里说的‘每个人’指的是:全世界的白领劳动力。LinkedIn是社交网络中为数不多的常青树和盈利明星;它针对的不是人们的‘一时兴起’,而是逃不掉的‘生计’问题(个人的求职、公司的招聘)。目前,大约有22%的LinkedIn用户在该平台上拥有500-999个一度人脉,拥有301-499个一度人脉的占了19%。
Twitter的新闻图谱:握有2.32亿月活跃用户,Twitter的用户数在社交媒体中算不得最大的,但它却是最最繁华的‘话题枢纽’。这只蓝色小鸟不知疲倦地向人们展示:此时此刻,在世界的每个角落,大家都在‘叽叽喳喳’些什么。今天的记者用Twitter来发现和分享突发新闻,有线电视台拿它来衡量用户对某某电视节目的反响。每天的5亿条推文为新闻和要闻提供了一个最接近于‘实时’的窗口。据Pew的研究数据,Twitter美国用户中有52%把该平台当做主要的新闻获取渠道。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23