
大数据思维到底是什么_数据分析师考试
大数据实际上是营销的科学导向的自然演化。大数据思维有三个纬度——定量思维、相关思维、实验思维。
第一,定量思维,即提供更多描述性的信息,其原则是一切皆可测。不仅销售数据、价格这些客观标准可以形成大数据,甚至连顾客情绪(如对色彩、空间的感知等)都可以测得,大数据包含了与消费行为有关的方方面面;第二,相关思维,一切皆可连,消费者行为的不同数据都有内在联系。这可以用来预测消费者的行为偏好;第三,实验思维,一切皆可试,大数据所带来的信息可以帮助制定营销策略。
这就是三个大数据运用递进的层次:首先是描述,然后是预测,最后产生攻略。
一切皆可测:迪士尼MagicBand手环
美国迪斯尼公司最近投资了10亿美元进行线下顾客跟踪和数据采集,开发出MagicBand手环。游客在入园时佩戴上带有位置采集功能的手环,园方可以通过定位系统了解不同区域游客的分布情况,并将这一信息告诉游客,方便游客选择最佳游玩路线。此外,用户还可以使用移动订餐功能,通过手环的定位,送餐人员能够将快餐送到用户手中。利用大数据不仅提升了用户体验,也有助于疏导园内的人流。而采集得到的顾客数据,可以用于精准营销。这是一切皆可测的例子,线下活动也可以被测量。
一切皆可连:网上订餐追踪系统
一家做订餐配送的互联网企业,在送外卖的自行车和汽车上安装一套软件和追踪系统,从配送外卖中采集了大量数据,如谁订了什么外卖、经过什么路线、到了谁的家里……而通过对数据的分析,可以得出哪家餐馆的什么外卖比较受欢迎,最快捷的路径是那一条等,在此基础上为商家提供备料建议,并规划一条合理高效的送餐路线。利用分析表面看似无关联的大数据,公司能够提供优化餐馆运营的增值服务。
一切皆可试:电商页面推荐功能
电商购物中,商品页面的其他产品推荐是个重要的功能(例如“买过该商品的人还买过XXX”)。如何量化和优化推荐功能的效果?有研究机构做了这样一个测试:按顺序向用户推荐全部/屏蔽部分推荐/屏蔽所有推荐,经过一个月测试之后,跟踪被测试对象的购买情况,发现不屏蔽推荐的短期效应最高,购买量最多。而屏蔽所有推荐的效果要优于屏蔽部分推荐。而原先购买过商品的消费者在被屏蔽推荐之后,商品的销售额下降更快,因而可以得出推荐功能对有忠诚度的客户作用更大。更有趣的是推荐功能的长期效果。研究发现,不论首次购买过程中用户是否购买了推荐商品,第二次的访问情况都遵循这一规律:未被屏蔽推荐的顾客中,10%的人会再次访问,被屏蔽推荐的访问率是9%,而实际转化成访问的次数是8%,如果再结合老顾客推荐效果会更好,最后会产生超过10%的营收提高。总体看来,推荐的效果更可观。
从描述到预测,再到产生攻略
社交网络分析跟踪,将消费者社交网络上的关键词频率转化为可视化表达,对消费者进行分类,进而做针对目标客群的精准营销,这是大数据营销的描述阶段。
预测阶段的案例是对信用卡使用情况的研究。原先每家银行只能看到消费者的本行刷卡记录,银行据此消费记录对客户实行奖励。其中存在的问题是,客户使用非本行信用卡的消费情况无从知晓,银行无法了解客户的实际消费情况,哪些是隐藏的“消费大户”。解决这一问题的难点在于,他行的数据记录很难获得,因此研究机构就使用第三方零售商调研的数据,通过建立模型,将两种数据融合,再对消费者的实际消费情况进行预测。模型中原先可能年消费只有2000-3000元的消费者,实际消费达到了4万,这些人成了非常有潜力的银行客户。
在攻略阶段,银行可以根据预测结果调整客户奖励政策,例如给年均消费3000元的客户提高返点,或者提供更丰富的积点兑换产品等,使这部分人群变成银行的忠诚顾客。
东方智慧与西方知识不可偏废
互联网思维如何PK大数据思维?“互联网时代”这个词在中国特别火,但在美国还未听说。这是因为互联网思维更契合传统东方思维方式。东方文化强调智慧,而西方更强调知识,智慧来源于经验,而知识来源于数据。诸葛亮和司马懿是一组典型的智慧PK知识的代表。司马懿是诸葛亮的最大对手,他可能是早期的大数据最佳应用者。从诸葛亮几点睡觉,吃几碗饭,他就能判断诸葛亮活不长了;而诸葛亮则凭借智慧猜出司马义胆子小,不敢进入空城。中国人崇尚智慧,可能更注重互联网思维,但光有互联网思维还不够,还要对数据有更深的认识和更好的运用。
大数据思维不像互联网思维那样令人热血沸腾。最近一项研究表明,采用大数据的公司比不采用大数据的公司利润平均高6个百分点。6个百分点也许不那么起眼,但“积少成多、聚沙成塔”,在激烈的竞争环境中,这是可以让企业生存下来、脱颖而出的资本。在美国排名前十的电商网站中,8家是传统零售商,只有2家是纯电商(亚马逊和易贝)。传统零售商拥有大量数据——沃尔玛一天的数据量达到PB级,这个数据资源能够转化为企业赢得比赛的耐力。由于大数据时代有内在的使从企业从做大到做强的反馈逻辑,企业做大之后会产生更多数据,对消费者的理解也就更深刻,营销更精准,企业变得更强,然后会产生更多的数据,从而形成正面反馈,这是一种最终的数据驱动成长模式。
运用大数据来指导营销决策,是许多并购战略的内在逻辑。
最理想的状态是科学与艺术的结合。可穿戴运动相机制造商GoPro的上市,就是大数据思维和互联网思维结合的成功案例。这家原本只生产实体相机的公司,先是开发出了带有WIFI功能的相机,用户可以将拍摄的照片和视频即时分享到互联网,内在的逻辑是从体验到传播再到分享的互联网思维;此后GoPro进入大数据的分析运用阶段,对用户拍摄的内容进行分类,将内容和潜在的广告商匹配。此外,GoPro还购买了电视频道的转播权,通过数据分析哪些时段适合播放什么内容,再与广告匹配,实现精准营销。GoPro从一家实体相机生产商,拓展出了社交平台,甚至是媒体的功能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10