京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据落地:五步搞定数据驱动营销_数据分析师考试
2013年,国内网络购物市场交易规模达到1.85万亿元,增长42%;预计到2016-2017年,国内网络购物市场交易规模将达到40,000亿元。当消费者纷纷借助互联网、智能终端设备等数字化媒介进行交易决策时,对于企业而言,这些海量数据正成为富含业务洞察力以及市场竞争潜力的宝贵资源。
而随着大数据价值快速获得认可,大数据在不同行业的落地应用就成为最受关注的焦点,也成为2014年大数据技术发展的重大趋势。目前,大数据营销已经不再是一个市场营销术语,已经从萌芽的概念成长为实际的业务应用,成为企业实现业务转型的战略新选择。
在“2014 Teradata大数据峰会”上,Teradata天睿公司针对大数据的落地实践,分享了通过五个步骤如何帮助企业利用数据驱动营销,并将大数据资产转化成真正“货币化”的收益。
第一步:顺大势,讲战略
市场营销部门、销售部门、IT部门以及整个高级管理层需要一个统一的战略。这个战略必须直指核心业务目标,并且面面俱到以下5个方面:客户互动、分析、数据、组织结构变化和技术。
第二步:打破隔阂
通过对2,200位市场营销人员的调查,Teradata发现大多数营销人员认为内部和外部的营销隔阂将妨碍他们有效地进行营销。同时,Gartner预言首席营销官(CMO)将比首席信息官(CIO)在信息技术方面花费更多,任何疑惑也就烟消云散了。现在比以往任何时候,更需要营销人员与IT人员在整个企业进行合作。
第三步:解开“数据毛球”
若公司没有能力处理各个信息源的信息,将会导致互动、应用、数据和流程的堆积,形成杂乱的数据环境。这一杂乱的数据环境,我称之为“数据毛球”。调查显示,杂乱的数据环境导致仅有18%的市场营销人员会使用单一视图观察客户互动。市场营销人员需要在整个企业中开展小型试点项目,用于解开每一条线上的“绳结”。
第四步:指标至上
为什么即使现在,市场营销仍难以证明自身价值。因为鲜少有CMO了解如何驱动和评估投资回报率。首先,市场营销人员必须定义哪些宏观指标能够最大体现自己在推动业务发展中所做的努力。然后,他们需要同企业高层分享这些成果,以提升透明度并证明市场营销的价值。
第五步:流程当道
大多数企业领导并不认为流程有什么意思。但当流程带来竞争优势或提升品牌关联性时,它就变得很有意思了。临时方法以不再行之有效。今天,市场营销需要灵活,从而缩短营销周期,提高营销运营有效性。成功的营销人员通过简化、自动化和革新流程,以提高营销绩效,提升客户体验,并提高销售量。
后记
归根到底,大数据营销就是利用将这些数据转化为真正价值的策略和行动,帮助企业在“数字化冲击”的浪潮中发现和获得巨大的业务价值。换句话说,大数据营销就以数据分析为基础,依靠数据驱动,致力于实现精准客户沟通,进而提出个性化的产品和服务,通过高效匹配客户需求,提高营销的绩效。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14