
大数据时代是必然 人类正处在新时代的起点上_数据分析师考试
大数据时代已然展露出其恢宏磅礴的历史趋势,但没有人能够预见在新常态下它到底将扮演何种角色,到底将如何改变世界。在信息大爆炸,数据量飞速增长的今天,大数据时代已成为一种必然。我们可以把大数据看成是数字世界对物理世界的镜像,以现在物理世界的数字化程度来看,目前的镜像度不超过5%。因此,大数据的未来还会更好、更快,人类正处在新时代的起点上。
大数据=互联网+云计算
关于互联网、云计算和大数据之间的关系,可以如此理解,“互联网妈妈和云计算爸爸生了个大数据孩子”。如何解读这三者关系呢?这三者的起源是互联网,互联网出现之后有大量的非确定性状态和非确定性业务发展和扩展,以及子数据,包括用户规模和数据量的增长。那么传统的IT就没法处理,所以就必须有新的IT架构出现,那就是云计算,最典型的起源就是谷歌的三架马车,来构建全球的信息的技术,所以云计算是支撑互联网快速发展的技术使能型,互联网快速发展,导致用户越来越多,那么数据就会越来越多,云计算技术是处理互联网和大数据的一种技术体系。云计算是对互联网和大数据的有效支持,互联网则提供了一个人的行为有效量化的、不受别人侵犯隐私的观察渠道。
因此,云计算、互联网、大数据三者之间关系的解剖是理解大数据产业发展以及未来战略设计非常重要三个关键因素
大数据是把双刃剑
没有人能否认大数据正在开启一次重大的时代转型,像互联网浪潮一样,大数据将全面甚至更深层次地改变人们的生活、工作和商业模式。大数据是把双刃剑,首先体现在它所带来的大数据产业的机会与约束上。现在大数据如此火爆的时候,我们对数据的利用率还不到7%,可见数据的挖掘使用,还存在着不可预想的发展空间。而另一方面,在移动互联网盛行的当下,网络处处留下了我们的“数据”,一定程度下,衍生了网络安全问题。如何找到平衡点,让大数据服务于人类而不会失控,也是值得思考的问题。
大数据的出现是必然
大数据未来更大的空间在于人工智能,这方面可想象的空间非常大。正如之前所说,人类对大数据的应用还不到7%,在未来,人工智能将是大数据产业发展的主要方向之一。
就如同电影《永无止境》提出的问题:人类通常只使用了20%的大脑,如果剩余80%大脑潜能被激发出来,世 界会变得怎样?在企业、行业和国家的管理中,通常只有效使用了不到20%的数据,如果剩余80%数据的价值激发起来,世界会变得怎么样呢?随着互联网、大数据的不断发展,如果人类利用了更大的大数据,世界又会发生什么呢?人工智能在未来又将带给我们什么惊喜呢?那就取决于你的想象力了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01