
政府拥抱大数据 治理迎来新格局_数据分析师考试
在全社会信息量爆炸式增长的背景下,政府部门该如何拥抱大数据?专家建议,一方面要加强与大数据分析企业、互联网公司的合作,获取更丰富的数据,另一方面要开放一些政府数据给企业,发挥企业的智力资源与技术实力,为政府提供决策支撑—
国办近日印发《关于运用大数据加强对市场主体服务和监管的若干意见》,提出充分运用大数据先进理念、技术和资源,加强对市场主体的服务和监管,推进简政放权和政府职能转变,提高政府治理能力。
“这是适应时代需求的必然选择,是智慧城市建设的重要切入点。”中国电子信息产业发展研究院信息化研究中心副主任潘文接受《经济日报》记者采访时表示,公共信息资源中蕴含的经济潜力是惊人的,用好大数据,能有效提高公共决策的质量和效率,并顺应“大众创业、万众创新”的潮流需要。
蕴含巨大经济潜力
在信息社会,随着大数据、云计算、移动互联网等新技术及相关的创新应用不断加快,海量数据正在政务管理、产业发展、城市治理、民生服务等众多领域不断产生、积累,数据资源也和土地、劳动力、资本等生产要素一样,成为促进经济增长的基本要素。
近年来,我国大数据产业规模迅速增长。赛迪顾问的统计数据显示,2014年,中国大数据IT市场规模达到93.1亿元,增长率为37.3%。预计2015年至2017年,中国大数据IT市场年复合增长率有望达到33.3%。
大数据为何能蕴含如此大的经济潜力?“因为数据的体量越来越大、来源越来越广泛、内容越来越丰富,可以从更多维度全面还原市场,让政府对市场有更加准确的把握,进而帮助政府提高服务与监管的水平。”赛迪顾问电子信息产业研究中心高级分析师张梓钧说。
“从广义上看,我国大数据产业或已超过1000亿元,大数据企业群体正在快速兴起。”中关村(7.66, -0.67, -8.04%)大数据产业联盟副秘书长陈新河表示,大数据思维和应用已逐渐渗透到公共管理和政府治理范畴内,对于推进政府治理从粗放化向精细化、从被动响应向主动预见、从个人经验判断向数据科学决策、从行政主导型政府向以人为本的服务型政府转型都有重要作用。
开放提升服务水平
《意见》提出运用大数据提高为市场主体服务水平。潘文对此分析说,利用大数据等现代信息技术,可以增加政府信息公开透明度、提高注册登记效率、简化项目审批程序、有效综合评估企业信用状况、进行经济运行监测预测和风险预警等等。这些进步都有利于提升政府公共服务和监管的实时性和有效性,有利于方便市场主体,提高经济社会运行效率。
“总体来说,我国政府运用大数据为市场服务还在初期探索阶段。”张梓钧建议,一方面要加强与大数据分析企业、互联网公司的合作,获取更丰富的数据,另一方面要开放一些政府数据给企业,发挥企业的智力资源与技术实力,为政府提供决策支撑。
近年来,互联网的高速发展带来了数据爆炸式增长,数据已成为企业未来新战略发展的中心。百度[微博]、阿里巴巴[微博]、腾讯等互联网企业分别通过搜索、产业链、用户掌握着数据流量入口,已在多个领域尝试对掌握的数据进行利用,体系和工具日趋成熟。浪潮、曙光等IT企业则把重心转向数据服务,并和政府有了多项成功合作。
“开放数据,是政府部门实现数据创新应用,服务产业、企业走向升级发展道路的重要途径。”浪潮集团董事长孙丕恕认为,当企业数据的来源不再局限于财务、税务、信贷、保险、信用历史等传统领域和组织内数据,还扩展到产业分布、发展需求、市场现状等广泛领域,将为企业和经济发展提供全新的资源支持,激活“数据经济”的全部潜能。
众包强化监管能力
“以前对市场主体的监管靠工商、行政等机构,受困于人员、资金,很难全面到位,而大数据时代利用企业画像技术将有效提高监管能力。比如,根据网络上餐饮点评数据、微博吐槽数据、论坛热议信息等几乎可以对辖区的所有餐馆进行360度的客观评议,以众包的方式取代原来的抽检方式,大大减少漏检的可能。”陈新河说。
潘文表示,依托在日常监管所形成的庞大的企业信息数据,开展大数据监管专项研究和实践,建立科学的数据分析模型,通过对市场主体数据的综合比对、分析、监测、科学筛查,能及时发现涉嫌违法的市场主体,预警系统性、区域性的市场异常现象,实现精准打击的信息化监管模式,减少执法资源的无效投入和浪费,全面提高监管效能。
不仅如此,运用大数据进行市场监管,还能让多部门、多环节产生的数据交织融合,产生以信用为核心的新型监管机制。“但只有实现跨部门跨领域的数据共享,才能真正打造出全面可靠的信用体系。”张梓钧说。潘文也指出,要充分利用大数据监管理念及思维,加强数据整合、采集、分析、挖掘,让数据决定监管的重点,并推动跨区域跨部门之间的信息互联互通。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02