
如何化旅游大数据为商业价值_数据分析师考试
来到山明水秀的景区,入住客栈,卸下行李,打开微信找到免费Wi-Fi,就能看到附近地道的美食菜馆,有地图路线指引,还有过往游客的评价。这是国家旅游局今年最提倡的智慧旅行的设想场景。
其实,在智慧旅行的背后,是海量大数据的支撑,这些看似呆板的数据能为旅游产业经营者们创造巨大的商业价值,而如何运用这些数据并使之提升业者的利润成为关键。
预测和追踪
越来越多的业者意识到数据的商业价值。
不少旅游业者开始尝试大数据收集和智慧旅游的开发,比如携程、同程、票管家等。
一手创办了在线旅游B2B票管家的黄荣最近刚刚创立了“聚创致旅”,这是一个集合了大数据和智慧旅行概念的新公司。
“我理解的智慧旅游是在政府构建的智慧城市之下,未来旅游企业需要在大数据时代高度移动互联网化的背景下达到与旅游消费者之间的无缝交互,其应用场景应该包括近场支付、移动终端支付、移动数据化管理、社交化营销等。”黄荣认为。
有了如此概念,那么大数据从何而来,业者又如何运用?
携程攻略社区事业单位、智慧旅游业务总经理蓝美玲告诉记者,携程收集数据后,可以知道各个旅游目的地、酒店、景区的预订情况,这些数字的首要功能就是给予上下游产业链者市场预判。
蓝美玲指出,目前黄山、九寨沟等著名景区都非常注重游客量与安全问题,在黄金周期间这一点尤为重要,但是每天究竟有多少客人来景区难以预测,此时携程的大数据就起到了关键作用。
“我们的景区和附近酒店预订数据相当于告诉该景区,你在近期的游客量预计有多少,他们的出行结构是家庭客还是商旅,这些数据我们会以预测报告的形式给到景区。这对他们而言能做好安全和市场准备,以管控客流,对我们而言则加强了OTA与景区方的资源合作。”蓝美玲说。
携程大数据的另一项特色是“一生的足迹”,该功能是记录下使用者曾经到访的地方甚至是其轻轻动一下手指查询的记录。
“比如一个客人,他点击浏览了新加坡旅游,然后进而点击了几个景点和酒店,这些都可以被记录和追踪下来,然后结合其最终的订单,系统可以知道客人的偏好,消费定位和消费习惯,甚至是其餐饮习惯。今后携程就可以根据客人的消费特点进行精准营销。精准营销非常重要,精准有效客户所贡献的利润是最高的。”蓝美玲如是说。
大数据暗藏商机
“番茄来了”是一家开发智慧旅游的企业,其主要与旅游城市的客栈合作,近期,其刚开发了一款智慧旅游产品——“智连古镇”,即游客到店以后,不需要进行繁琐的登记流程,只需要连接客栈的微信WiFi,进入服务页面页,即可以快速的办理入住手续,自动分配到房间。退房时,通过页面的快速退房就可以迅速通知到老板准备结算。同时在支付方面,游客也无需为古镇ATM机少,提款不方便或客栈没有POS机等问题困扰,客人只需要快速入住的时候,选择微信支付就可以轻松搞定付款环节,当然也可以通过“番茄来了”提供的行业创新的“虚拟POS-快捷支付”方式,轻松扫码付房费。
“通过这些智能服务,我们可以获得客户的使用以及他们的入住和消费数据,这些数据弥足珍贵。我们会按照几个指标进行分析,然后给旅游产业链者带来巨大商业价值。”“番茄来了”运营总监赵永林告诉记者,基于这些数据,其可以进行房型入住率分析,以入住率,收入变化,同比,环比等数据分析,客栈酒店经营者可以根据分析结果来为客栈装修整改、房型更改、房价调控,改善入住率。比如,若一家酒店其今年大床房销量最好,标间入住率最低,那么其未来可以考虑减少标间的数量,改造为大床房,或者调低标间的卖价,针对标间做促销活动等,以此提升酒店入住率。
游客的大数据中还精准显示了预订习惯、归属地来源、年龄分段、性别统计、入住时间统计、消费内容统计、续住统计等。在赵永林看来,这些数据极具价值,因为客人的性别占比可以让酒店或餐厅改善装修风格以符合主流客群喜好;而年龄段占比则可以让业者在服务上倾向于年轻化或中年化;客人地域的占比数据则可以让业者在餐食和生活习惯方面进行南北方差异经营。
“如果一家酒店的客人来源60%是北京地区,70%客户是年龄在18~26的年轻人,女性居多。那么我们的系统会建议该酒店未来的广告宣传和口碑宣传,应更多重视在北京地区,而客栈的装修和服务应该更具有年轻化和女性化。同时可多考虑组织年轻人喜欢的一些活动,以提升客栈人气等,这些都有助于业者提升收益。” 赵永林指出。
此外,游客的消费记录和数据还可以提供行业的横向对比数据。比如一家酒店入住率在区域里的排行情况、区域内渠道合作比例、区域内平均房价、区域内节假日调价情况、区域内续住情况等等。让酒店业者更清楚同行经营情况,针对性提升自己的业绩。
丽江一家客栈经营者表示,根据上述区域排行数据状况,其发现其在2014节假日入住率为60%,价格较平时上升400%,而丽江区域客栈的整体入住率为89%,同期价格较平时上升120%。该客栈经营着算了一笔帐,根据入住率、房价和市场平均水平与涨幅,其认为,其应该在节假日调价,控制涨幅,提升入住率,以便于在同行竞争中夺得优势。这相当于进行酒店收益管理,有助于提升利润率。
“我们可以提供客栈订单、财务管理等基础信息管理,也可以根据上述数据分类分析为旅游产业链者提供‘月报’,‘年报’等服务。主要目的是为了让经营着清楚地了解其自身、客人以及市场的特点,并能根据数据分析结果对服务、硬件等进行改善。”赵永林表示。
部分旅游业者反映,通过对大数据进行上述细分指标分析,针对旅游行业和游客,大数据分析得出的入住率,平均房价、节假日的房价变化,和整体入住率变化、旅游目的地游客预订习惯差异、入住天数、消费内容、消费金额、各个时间的旅游热度分析、消费差异分析等,可以为行业,景区,旅游管理机构等提供实时数据参考,直接改善经营。若改善得当,则不少业者通常可以提升20%~50%的收益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28