京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“将数据转化为洞察”,这是不是很容易?在大数据时代背景下,你可能会认为每个人都在做着同样的事情。如果不幸成为例外,那只能说明你已经落后于时代了。但是,对很多IT负责人来说,大数据仍然是一个全新的领域,不对其过分追求反倒可能是当下合理的选择。
关于大数据的应用在各行各业俯首皆是。比如,零售行业通过将购物偏好和位置信息相结合,为客户提供更加个性化的服务和商品;或者,制造业通过预测分析来提升运维水平。
基于飞行实时数据,发动机制造商对维护时间点和飞行性能进行评估,而后为航空公司提供创新的租赁和服务合约。
超市很早以前就通过天气预报数据来决定冰淇淋和烧烤食物的上架时间。现在,业者开始基于客户忠诚度计划搜集的购物习惯数据,决定在第二天什么时间点提供那些易腐烂的商品。
在这些案例中,无论数据是结构化还是非结构化,分析的最终目的都是相同的:提升销售或降低成本。
但是,如果不在大数据上进行投资,会发生什么情况呢?也许,你很聪明,并且已经知道该在哪里进行投资以获得竞争优势和丰厚利润;或者,机缘巧合,你的成功来自于竞争对手的失误。
如果属于第一种情况,本文对你毫无意义,你已经掌握了制胜之道。如果是第二种情况,我的建议是,继续阅读本文,思考在大数据上的投入将会给企业带来什么改变。
需要考虑的问题
下面这几个简单的问题将有助于你判断是否该在大数据上进行投资:
·基于企业现有的数据,你是否能产生出新的洞察?
·从IT的角度,结合业务数据是否能提升企业的效率?
·以一个客户的角度出发,考虑企业是否能更好地为你服务,提升你的效率,让CFO不再愁眉苦脸?
·对于同行业或者其他行业那些宣称通过大数据取得成功的企业,你是否会感到嫉妒?
如果你的同事(比如首席营销官)很快就会来问你是否具备大数据方面的能力,你会不会感到担心?如果答案是否定的,依据是什么?
对于上述问题中的任何一个,如果你的答案是肯定的,那么也许就应该考虑以下几个方面:
投资规划
挖掘大数据的应用场景与其他新技术的投资并无二致。驱动因素?风险忍受度?改变现状后的预期结果?能挖掘什么新的价值,其中有形和无形价值的比例各是多少?
以上问题中,没有任何一个是决定性的。但是所有问题放在一起,就足以形成最终的投资决策。如果事关新兴的理念,供应商和顾问们会竭力想在新领域打出名声,你可以好好利用这一点。
当新技术在各个行业分块或业务链条上的应用还不充分时,供应商和系统集成商会更愿意在商业开发上进行投入,这就为你尽可能降低成本提供了机会。
合作伙伴选择
为什么只挑选一家合作伙伴?同时引入多家合作伙伴对同一组数据进行挖掘,这在业界已经有诸多正面的案例。各家合作伙伴之间会进行真正的竞争,从自身视角出发分析数据。在这种情况下,客户通常会得到数个不同的结果,其中任何一个都可能是真正的洞察。
但是,当你期望最终获得有形价值时,要做好准备面对各种意想不到的结果。
对各类结构化数据的可视化无疑会对决策有所帮助。可视化能够让数据变得更加容易理解,提升附加价值。然而,当把同样的结构化数据与非结构化数据以及具体的上下文相结合时,真正的洞察才会产生。
要鼓励你的大数据供应商打破传统思维,向你展示之前从未想象过的结果。尽管实际工作完成之前无法预测是否能带来价值,但是这至少能让你从全新的角度去思考业务。一旦获得了新的视角,你将从此脱胎换骨。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30