
紧跟大数据步伐 勇于接受新技术_数据分析师考试
随着大数据时代的不断发展,直至今日,企业虽然认识到大数据分析能给企业带来发展的价值,但传统的数据管理和安全问题已经阻碍了大数据的部署。
企业在什么情况下适合大数据,这是由企业处于发展中的位置决定的。
许多提供大数据业务的厂商肯定都争相想做企业的生意。毕竟,大的数据不是最小的数据集合,但大数据需要充分利用尽可能多的数据管理。如果你正在寻找一个部署大数据的定义,这却不是完整的定义。你需要一个增长的数据中心基础设施相匹配所有这些增长的数据。
这个大的数据热潮才真正开始与Apache Hadoop的分布式文件系统(HDFS),开启了基于成本效益规模的服务器使用相对便宜的本地磁盘群集的作为海量数据分析的时代。不管企业发展如何迅速,Hadoop及其相关大数据的解决方案,都可以保证持续分析各种原始数据(即,不完全结构化的数据库)。
问题在于,一旦你想从大数据入手,会发现传统的数据项目,包括那些熟悉的企业数据管理问题又会涌现出来了,比如数据的安全性,可靠性,性能和如何保护数据。
虽然Hadoop HDFS已经趋于成熟,但仍有不少差距以满足企业需求。事实证明,当大数据在进行产品生产数据收集时,这些存储集群(DAS)上的产品可能实际上没有提供最低的成本核算。
这里面,最关键的一点其实是大企业如何将大数据盘活了。我们当然不是想简单地拷贝、移动、备份大数据数据副本,复制大数据是一个大的工作。我们需要管理作为安全和谨慎,甚至更多的要求,所以,比小的不同的数据库,不要抱着尽可能多的详细信息。如果我们的关键业务流程的基础上新的大数据的储存中,我们会需要它的所有的操作弹性和高性能。
大数据归属的新选择
物理DAS仍然是Hadoop最好的存储介质,因为相关的高水平的专业和业务的公司的都是经过研究和实践来确定存储介质。但这样基于HDFS的数据储存却有很大的问题。
首先,默认方案是所有资料进行复制,移动,然后备份。HDFS是基于大数据块的I/O优化,省去了数据交互的时间。以后的使用通常意味着数据复制出来。尽管有本地快照,但他们并不完全一致或时间点不完全可恢复。
对于这些和其他原因,企业存储厂商聪明的将HDFS做改变,一些技术狂人类型的大数据专家使Hadoop计算利用外部存储。但对许多企业来说,它提供了一个很好的妥协:无需高维护存储或存储新的维护方式的适应,但这有一定的成本。
许多供应商,如EMC的 isilon提供对Hadoop集群远程HDFS的接口,是生意量比较大的企业首选。因为他们将是在isilon里,进行任何其他数据处理大数据的保护,其中包括安全和其他问题。另一个好处是,在外部存储的数据通常可以访问其他协议(如网络文件系统,NFS)的储存,支持工作流和限制数据的传输和企业内需要的数据副本。NetApp也基于这样的原理处理大数据,一个大的数据参考架构,结合一个组合的存储解决方案,直接进入Hadoop集群。
另外值得一提的是,虚拟化大数据分析。理论上,所有计算和存储节点可以都可以进行虚拟化。VMware和RedHat/OpenStack有Hadoop的虚拟化解决方案。然而,几乎所有的HDFS主机节点不能解决企业的存储问题。一个有创意的新公司bluedata提出一个新的选择。它模拟Hadoop计算方面使企业把现有的数据集——SAN/NAS——加速和转储到它的HDFS的覆盖之下。在这种方式中,大数据分析可以做到一个数据中心的数据没有任何变动,从而使用新的存储架构和新的数据流或数据管理的所有变化。
大多数Hadoop分布都是从近Apache的开源HDFS(目前软件定义的存储大数据)开始,区别是它们采取了不同的方法。这基本上就是企业Hadoop所需存储,从而建立自己的兼容存储层在Hadoop HDFS上。MAPR版本是完全有能力处理I/O快照复制的支持,同时和原生支持的其他协议兼容,如NFS.它也非常有效,并有助于主要提供企业业务智能应用程序,运行决策支持解决方案依赖于大数据的历史和实时信息。类似的想法,IBM已经出炉的高性能计算系统存储API为Hadoop发行版作为一种替代HDFS.
另一个有趣的解决方案可以帮助解决数据的问题。一个是dataguise,数据安全启动,能切实有效地保护Hadoop的大数据集的一些独特的IP,它可以在一个大的数据聚类自动识别和全局覆盖或加密敏感资料。水平线数据科学(Water LineScience)是这个领域的新兴技术,如果你连线登陆你的数据文件到Hadoop,无论数据在哪里,即使是HDFS,它都将自动储存。 大数据提供的产出物有助于快速建立商业应用,利用数据的来源和位置来统计商业所需的资料。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26