京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析现状 发展计划和面临的挑战_数据分析师考试
为分析并预测大数据技术的发展现状、发展计划和面临的挑战,IDC将于2013年秋季对德国相关应用企业进行问卷调查。
从技术角度来看,大数据包括像Hadoop、高扩展度数据库、最佳可视化工具以及高性能搜索引擎这样的新技术和已经成熟的技术,如事件驱动处理技术、商业智能技术和数据挖掘技术,这些技术主要用来处理海量的数据。
大数据技术的主要任务是从内部和外部数据源中找出所需的数据,并对这些
数据进行高效快捷的评估,最终提供决策支撑。
全球对大数据技术和服务的投资在增长
目前,大数据在美国最为发达,包括德国在内的欧洲地区在这一领域稍显落后。不过,现在业内人士已经注意到了这一趋势,各个企业中的IT部门正在感受到发展的压力。
期望和前提
数据评估和报告在大多数企业中早已不是新鲜事物,只是如今旧的数据评估和报告工具已经无法满足新的需求:现在的专业人士要求尽量实现数据实时分析,目前的基础设施、数据结构、解决工具以及商业模式根本无法保质保量地完成这个要求。
企业现在面临两个选择:对现有技术进行扩展,或者实现技术升级。大数据技术就是比较理想的新技术。
讨论热点
过去几年,大数据讨论中比较热的话题是技术问题和数据组织问题。经过几年的发展,人们对这些问题的理解有了深入发展,又开启了新的讨论话题。
现在,专业人士讨论的焦点问题是工作量优化,未来关于工作量和新的商业模式的讨论还会更多。2011年和2012年大数据的项目比较少,主要以测试安装为主。
IDC预测,今年和明年这一领域会出现大幅增长。对于企业来说,大数据技术既是挑战,也是机遇。
战略和解决方案
所以,大数据势必成为ICT(InformationCommunicationTechnology,信息通信技术)战略的一部分。数据访问和融合也变得越来越重要。
IDC认为,2013年和2014年人们关注的热点将从技术转移到信息查找和知识获取。“软件定义”(Softwaredefined)、融合技术、开源软件及平台是大数据基础设施建设中最核心的问题。其中,开源软件与平台还需要经过一个商业适应的过程。许多企业把投资重点放在机器生成数据的实时分析上,因为这可以加快企业的发展。终端用户希望解决方案可以简单易操作。要实现应用程序和移动解决方案的可视化和直观互动,就要实现大数据的“消费化”。
IDC预测,由于缺乏大数据分析的方法和技术,许多企业将使用“现成的”解决方案。
投资活跃
全球范围内,企业对大数据技术和服务的投资增长都会很快。IDC预测,未来几年的平均增速将大于30%。
市场透明度还不够
企业还有许多待解答的问题。对于许多IT负责人来说,可衡量的商业收益、数据安全、数据法律以及可使用数据的准确定义这些问题都不够透明。对于企业来说,数据正在加速成为运作资源和生产要素。要实现从技术到信息和知识获取的转变、使用开放源、进行实时分析,企业就要对技能、解决方案和服务投资。许多企业对这一领域了解不多,需要有人为他们解释技术、组织、法律以及文化方面的问题。
总的来说,企业在获取大数据技术和分析方面的信息以及咨询需求都非常大。对于这一领域的ICT供应商和服务商来说,这是一个绝好的发展壮大的机会。要制定正确的市场营销策略,获得漂亮的销售成绩,关键就在于了解用户环境中IT和商业决策者的要求和期望。
为验证IDC对大数据分析发展现状、发展计划和要求方面的预测,IDC将于今年秋季对德国的应用企业进行调查。这份调查名为《分析、可视化、预测——2013德国数据策略:大数据分析能否带来商业成功》,主要是了解先进的分析工具在企业中的应用情况,了解企业更倾向于使用哪种解决方案来选择和加工重要数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01