
大数据时代降临 可能带来的巨大价值_数据分析师考试
进入2012年,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。
大数据到底有多大
大数据到底有多大?一组名为“互联网上一天”的数据告诉我们,一天之中,互联网产生的全部内容可以刻满1.68亿张DVD;发出的邮件有2940亿封之多(相当于美国两年的纸质信件数量);发出的社区帖子达200万个(相当于《时代》杂志770年的文字量);卖出的手机为37.8万台,高于全球每天出生的婴儿数量37.1万……
目前,数据量已经从TB(1024GB=1TB)级别跃升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别。国际数据公司(IDC)的研究结果表明,2008年全球产生的数据量为0.49ZB,2009年的数据量为0.8ZB,2010年增长为1.2ZB,2011年的数量更是高达1.82ZB,相当于全球每人产生200GB以上的数据。而到目前为止,人类生产的所有印刷材料的数据量是200PB,全人类历史上说过的所有话的数据量大约是5EB。IBM的研究称,整个人类文明所获得的全部数据中,有90%是过去两年内产生的。而到了2020年,全世界所产生的数据规模将达到今天的44倍。
除了数据量大之外,大数据时代的数据还呈现出其他三个特征。一是数据类型繁多,包括网络日志、音频、视频、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。二是数据价值密度相对较低。如随着物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何通过强大的机器算法更迅速地完成数据的价值“提纯”,是大数据时代亟待解决的难题。三是处理速度快,时效性要求高。这是大数据区分于传统数据挖掘最显著的特征。
既有的技术架构和路线,已经无法高效处理如此海量的数据,而对于相关组织来说,如果投入巨大采集的信息无法通过及时处理反馈有效信息,那将是得不偿失的。可以说,大数据时代对人类的数据驾驭能力提出了新的挑战,也为人们获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。
大数据产业的崛起
越来越多的政府、企业等机构开始意识到数据正在成为组织最重要的资产,数据分析能力正在成为组织的核心竞争力。
今年3月22日,奥巴马政府宣布投资2亿美元拉动大数据相关产业发展,将“大数据战略”上升为国家意志。奥巴马政府将数据定义为“未来的新石油”,并表示一个国家拥有数据的规模、活性及解释运用的能力将成为综合国力的重要组成部分,未来,对数据的占有和控制甚至将成为陆权、海权、空权之外的另一种国家核心资产。
联合国也在2012年发布了大数据政务白皮书,指出大数据对于联合国和各国政府来说是一个历史性的机遇,人们如今可以使用极为丰富的数据资源,来对社会经济进行前所未有的实时分析,帮助政府更好地响应社会和经济运行。
而最为积极的还是众多的IT企业。麦肯锡在一份名为《大数据,是下一轮创新、竞争和生产力的前沿》的专题研究报告中提出,“对于企业来说,海量数据的运用将成为未来竞争和增长的基础”,该报告在业界引起广泛反响。
IBM则提出,上一个十年,他们抛弃了PC,成功转向了软件和服务,而这次将远离服务与咨询,更多地专注于因大数据分析软件而带来的全新业务增长点。IBM执行总裁罗睿兰认为,“数据将成为一切行业当中决定胜负的根本因素,最终数据将成为人类至关重要的自然资源。”
在国内,百度已经致力于开发自己的大数据处理和存储系统;腾讯也提出目前已经到了数据化运营的黄金时期,如何整合这些数据成为未来的关键任务。
事实上,自2009年以来,有关“大数据” 主题的并购案层出不穷,且并购数量和规模呈逐步上升的态势。其中,Oracle对Sun、惠普对Autonomy两大并购案总金额高达176亿美元,大数据的产业价值由此可见一斑。
一种全新的看待世界的方法
大数据是信息通信技术发展积累至今,按照自身技术发展逻辑,从提高生产效率向更高级智能阶段的自然生长。无处不在的信息感知和采集终端为我们采集了海量的数据,而以云计算为代表的计算技术的不断进步,为我们提供了强大的计算能力,这就围绕个人以及组织的行为构建起了一个与物质世界相平行的数字世界。
大数据虽然孕育于信息通信技术的日渐普遍和成熟,但它对社会经济生活产生的影响绝不限于技术层面,更本质上,它是为我们看待世界提供了一种全新的方法,即决策行为将日益基于数据分析做出,而不是像过去更多凭借经验和直觉做出。
事实上,大数据的影响并不仅仅限于信息通信产业,而是正在“吞噬”和重构很多传统行业,广泛运用数据分析手段管理和优化运营的公司其实质都是一个数据公司。麦当劳、肯德基以及苹果公司等旗舰专卖店的位置都是建立在数据分析基础之上的精准选址。而在零售业中,数据分析的技术与手段更是得到广泛的应用,传统企业如沃尔玛通过数据挖掘重塑并优化供应链,新崛起的电商如卓越亚马逊、淘宝等则通过对海量数据的掌握和分析,为用户提供更加专业化和个性化的服务。
最让人吃惊的例子是,社交媒体监测平台DataSift监测了Facebook(脸谱) IPO当天Twitter上的情感倾向与Facebook股价波动的关联。在Facebook开盘前Twitter上的情感逐渐转向负面,25分钟之后Facebook的股价便开始下跌。而当Twitter上的情感转向正面时,Facebook股价在8分钟之后也开始了回弹。最终当股市接近收盘、Twitter上的情感转向负面时,10分钟后Facebook的股价又开始下跌。最终的结论是:Twitter上每一次情感倾向的转向都会影响Facebook股价的波动。
这仅仅只是基于社交网络产生的大数据“预见未来”的众多案例之一,此外还有谷歌通过网民搜索行为预测流感爆发等例子。不仅在商业方面,大数据在社会建设方面的作为同样令人惊叹,智能电网、智慧交通、智慧医疗、智慧城市等的蓬勃兴起,都与大数据技术与应用的发展息息相关。
“大数据”可能带来的巨大价值正渐渐被人们认可,它通过技术的创新与发展,以及数据的全面感知、收集、分析、共享,为人们提供了一种全新的看待世界的方法。更多地基于事实与数据做出决策,这样的思维方式,可以预见,将推动一些习惯于靠“差不多”运行的社会发生巨大变革。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02