京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据”时代来临 CIO你准备好了么_数据分析师考试
未来的十年将是一个“大数据”引领的智慧科技的时代。随着社交网络的逐渐成熟,移动带宽迅速提升,云计算、物联网应用更加丰富。更多的传感设备、移动终端接入到网络,由此产生的数据及增长速度将比历史上的任何时期都要多,都要快。“大数据”时代的脚步悄然而至。
请试想一下:当40亿部手机、10亿部电脑,随时随地都在向分布在全球各地的服务器发送数据;当你开着车对着“语音助手”说:“我要在附近找一家最罗曼蒂克的餐厅。”之后,短短一两秒就能得到您满意的答案时。其背后向您提供服务所涉及到的定位、资料检索、存取、数据交换等一系列动作是何等的复杂。而这一系列动作正是由“大数据”所支撑,正如IBM总结的那样:“大量化(Volume)、多样化(Variety)和快速化(Velocity)”就是“大数据”的显著特征。大量、多样、快速给现在的IT业提出了巨大挑战。当今的网络环境、存储以及搜索架构越来越不适应这种新的变化。而大数据的到来将促使这些领域产生新的变革。为了让业界对大数据的价值和应用有更好的认识,将于4月17、18日在北京国家会议中心举行第四届CCS云计算高峰论坛暨展览将汇集业内知名的领导企业和政企IT主管,多角度、深入探讨大中国大数据产业。以下三点为本次大会讨论部分重点点:
问题一:网络架构不适应“大数据”时代
传统的网络架构已经不能满足现代网络应用需求。传统的网络结构设计是以客户端向服务器发出请求,由服务器应答返回结果给客户的垂直结构。而在大数据时代,这种垂直结构的服务请求将变得越来越少,取而代之的是水平结构的横向请求服务。“大数据”时代,大量的数据都存储在分布广泛、不同地域、各种类型的服务器中。当用户发出一个搜索或查询请求时,最多的运算是服务器之间的信息交换,最后将结果返回给用户。新一代网络架构要适应Web2.0时代的水平服务应用。
问题二:数据中心将面临巨大压力
“大数据”时代对数据中心的访问量是前所未有的。更多的网络设备将同时访问数据中心,这包括智能手机、平板电脑、台式机、笔记本、甚至正在马路上行驶的汽车。此时,数据中心面临的压力将是难以想象的。正如铁道部去年年底推出的在线订票系统,采用的系统不可谓是当今最先进的系统,但当有几亿人同时访问的时候,网站所有服务都陷入了瘫痪。这是所有工程人员难以预料的。“大”到一定程度的时候,任何事情都可能发生。随着全球经济一体化的深入,未来数据中心要面临的不仅是一个中国地区的访问量,而是全球几十亿的访问量。还是那句话:“用户你伤不起。”
问题三:数据仓库架构不适应高速反应的要求
当今数据库里的内容不仅仅是多,而且结构已发生了极大改变,不是以二维表的规范结构存储。大量的数据是非结构化的办公文档、文本、图片、XML、HTML、各类报表、图片和音频/视频等。并且在企业的所有数据中是大量且增长迅速的。企业80%的数据是非结构化或半结构化的,结构化数据仅有20%。并且全球结构化数据增长速度约为32%,而非结构化数据增速高达63%。预计今年非结构化数据占有比例将达到互联网整个数据量的75%以上。面临如此大量的非机构化数据,其移动和修改将耗费大量的人力物力,读取效率也将越来越低。当然这包括了物理存储和逻辑存储软、硬件两个层面。
当然“大数据”时代对IT业各方面的影响都将巨大且意义深远。此次会展不仅从大数据角度剖析对产业界的挑战与机遇,更有分会场《云计算基础架构》、《云应用服务》、《云计算?数据中心》等息息相关的领域,将为现场的专业观众带来全方位的产业观察和案例分享。
同期同地还将举行CENCE中国企业网络通信大会暨展览,包括UC/协作、呼叫中心、多媒体融合通信指挥调度/运营商增值业务及平台等专场的精彩内容。历经十二届的洗礼,CENCE中国企业网络通信大会暨展览已发展成为中国企业网络通信领域的标杆展会。预计会展将吸引约3千名来自运营商、政府部门、金融、电力、能源、医疗、教育、交通、物流、教育、制造业以及上市公司,科研院所中的信息部门主要负责人和企业IT主管以及专家学者等具有行业代表性的相关企事业单位人员参与此次盛会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29