京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据”时代来临 CIO你准备好了么_数据分析师考试
未来的十年将是一个“大数据”引领的智慧科技的时代。随着社交网络的逐渐成熟,移动带宽迅速提升,云计算、物联网应用更加丰富。更多的传感设备、移动终端接入到网络,由此产生的数据及增长速度将比历史上的任何时期都要多,都要快。“大数据”时代的脚步悄然而至。
请试想一下:当40亿部手机、10亿部电脑,随时随地都在向分布在全球各地的服务器发送数据;当你开着车对着“语音助手”说:“我要在附近找一家最罗曼蒂克的餐厅。”之后,短短一两秒就能得到您满意的答案时。其背后向您提供服务所涉及到的定位、资料检索、存取、数据交换等一系列动作是何等的复杂。而这一系列动作正是由“大数据”所支撑,正如IBM总结的那样:“大量化(Volume)、多样化(Variety)和快速化(Velocity)”就是“大数据”的显著特征。大量、多样、快速给现在的IT业提出了巨大挑战。当今的网络环境、存储以及搜索架构越来越不适应这种新的变化。而大数据的到来将促使这些领域产生新的变革。为了让业界对大数据的价值和应用有更好的认识,将于4月17、18日在北京国家会议中心举行第四届CCS云计算高峰论坛暨展览将汇集业内知名的领导企业和政企IT主管,多角度、深入探讨大中国大数据产业。以下三点为本次大会讨论部分重点点:
问题一:网络架构不适应“大数据”时代
传统的网络架构已经不能满足现代网络应用需求。传统的网络结构设计是以客户端向服务器发出请求,由服务器应答返回结果给客户的垂直结构。而在大数据时代,这种垂直结构的服务请求将变得越来越少,取而代之的是水平结构的横向请求服务。“大数据”时代,大量的数据都存储在分布广泛、不同地域、各种类型的服务器中。当用户发出一个搜索或查询请求时,最多的运算是服务器之间的信息交换,最后将结果返回给用户。新一代网络架构要适应Web2.0时代的水平服务应用。
问题二:数据中心将面临巨大压力
“大数据”时代对数据中心的访问量是前所未有的。更多的网络设备将同时访问数据中心,这包括智能手机、平板电脑、台式机、笔记本、甚至正在马路上行驶的汽车。此时,数据中心面临的压力将是难以想象的。正如铁道部去年年底推出的在线订票系统,采用的系统不可谓是当今最先进的系统,但当有几亿人同时访问的时候,网站所有服务都陷入了瘫痪。这是所有工程人员难以预料的。“大”到一定程度的时候,任何事情都可能发生。随着全球经济一体化的深入,未来数据中心要面临的不仅是一个中国地区的访问量,而是全球几十亿的访问量。还是那句话:“用户你伤不起。”
问题三:数据仓库架构不适应高速反应的要求
当今数据库里的内容不仅仅是多,而且结构已发生了极大改变,不是以二维表的规范结构存储。大量的数据是非结构化的办公文档、文本、图片、XML、HTML、各类报表、图片和音频/视频等。并且在企业的所有数据中是大量且增长迅速的。企业80%的数据是非结构化或半结构化的,结构化数据仅有20%。并且全球结构化数据增长速度约为32%,而非结构化数据增速高达63%。预计今年非结构化数据占有比例将达到互联网整个数据量的75%以上。面临如此大量的非机构化数据,其移动和修改将耗费大量的人力物力,读取效率也将越来越低。当然这包括了物理存储和逻辑存储软、硬件两个层面。
当然“大数据”时代对IT业各方面的影响都将巨大且意义深远。此次会展不仅从大数据角度剖析对产业界的挑战与机遇,更有分会场《云计算基础架构》、《云应用服务》、《云计算?数据中心》等息息相关的领域,将为现场的专业观众带来全方位的产业观察和案例分享。
同期同地还将举行CENCE中国企业网络通信大会暨展览,包括UC/协作、呼叫中心、多媒体融合通信指挥调度/运营商增值业务及平台等专场的精彩内容。历经十二届的洗礼,CENCE中国企业网络通信大会暨展览已发展成为中国企业网络通信领域的标杆展会。预计会展将吸引约3千名来自运营商、政府部门、金融、电力、能源、医疗、教育、交通、物流、教育、制造业以及上市公司,科研院所中的信息部门主要负责人和企业IT主管以及专家学者等具有行业代表性的相关企事业单位人员参与此次盛会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12