京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何用大数据找到下一个扎克伯克_数据分析师考试
很多人都对科技创业公司的创始人有一套固定印象:男性,20多出头,从小就在地下室里玩电脑,大学中途辍学,后来成为亿万富豪。这正是马克·扎克伯格(Mark Zuckerberg)、史蒂夫·乔布斯(Steve Jobs)和比尔·盖茨(Bill Gates)的真实写照。
但有一件事情却被很多人忽略了:这三个人其实都是例外情况。
根据加州大学伯克利分校哈斯商学院的数据分析,多数成功拿到风险投资的科技创业公司的创始人简历都很常规。平均而言,这些创始人年龄38岁,拥有硕士学位和16年的工作经验。
然而,如果这样一个人来到顶尖风投的办公室,却很有可能遭到拒绝。风险投资家往往只接受熟人的推荐,而且高度依赖直觉和经验。“任何看起来像马克·扎克伯格的人都能欺骗我。”美国孵化器Y-Combinator联合创始人保罗·格雷厄姆(Paul Graham)说。
然而,这种模式却意味着投资者可能错过一些真正有潜力的创业者。随着科技行业的日益多样化,扩大投资对象的范围不仅对公司形象有利,而且能够带来实实在在的利益。种子投资可以促进创业公司的发展,所以选好投资对象至关重要。
“我们脑子里对科技创业公司创始人形成了固定印象:他们都是20多岁的白人男性,在顶尖学府学习计算机并中途退学。”彭博社旗下科技投资基金Bloomberg Beta负责人罗伊·巴哈特(Roy Bahat)说,“但只有很少的数据迎合了我们的想象。而实际上,我们可能都错了。”
用数据预测下一个创业者
Bloomberg Beta正在采取与众不同的策略。该基金与哈斯商学院的研究人员汇总了成功创业者的数据,并希望借此预测哪些人有朝一日可能成功创业——甚至赶在他们创业之前就预测这种概率。之后,投资者便可与这些人取得联系,并与之会面。(询问硅谷程序员是否计划创业,有点像询问好莱坞的服务员是否想演电影。)
由于风险投资仍然高度依赖熟人之间的推荐,所以这个名为“未来创业者”(Future Founders)的项目希望找到更多潜力巨大的创业者。
“还有哪个行业需要等着你的朋友把客户介绍给你。”巴哈特说。
该项目还有可能产生另外一个影响:找到更加多样化的创业人群。
哈斯商学院企业家精神教授托比·斯图尔特(Toby Stuart)和博士候选人吴威仪(Weiyi Ng,音译),利用招聘公司People. Co和创业投资网站AngelList的数据分析了当今的科技创始人现状。他们的重点是2005年以来在湾区和纽约创办的公司,并借此开发了一套算法,预测这些地区的哪些人有朝一日可能创办公司。
其中的一些结果颠覆了人们的故有认知:尽管现有的创业者中只有12%是女性,但当他们根据成功创业者的其他特质寻找潜在创业者时,却有20%是女性。
“如果你仅关注获得融资的人的专业背景,就会发现拥有这些背景的人比真正得到融资的人更加多样。”巴哈特说。
数据显示,只有53%的创始人拥有技术背景,表明计算机学位并非必要因素。在潜在的创业者中,拥有技术背景的人有8%为女性。
吴威仪表示,创业者的平均学历为硕士,而大学中途退学的人占比“从统计意义上可以忽略”。创业者的平均年龄为38岁,甚至有38%获得风投支持的创业者超过40岁。
在预测某人是否会创业时,最可靠的因素是“此人曾经任职于风投支持的企业”,这一点不太出人意料。供职于谷歌可能有助于创业。在同一职位上任职时间较长的人,创业的概率也会随之降低。而曾经创业失败的人,更有可能在二次创业时获得风投支持。
目前就对Bloomberg Beta的战略能否奏效下判断还为时尚早。过去两年间,该公司每年都会找到350名潜在创业者,去年有8人创业,3人获得风投,而Bloomberg Beta投资了其中的1家。巴哈特表示,即使他们发现的潜在创业者并没有创办公司,也可以借此为其投资的公司物色优秀人才。
另外几家投资者也高度依赖数据制定投资决策。Google Ventures就参考了创业公司的地理位置和创始人的过往经历等数据。WR Hambrecht & Co几乎完全依靠算法投资,但该公司表示,在一家公司的成功中,创始人的因素仅占12%的比例,他们所进军的市场更加重要。
“没有一种方法可以预测未来。”WR Hambrecht董事总经理托马斯·瑟斯顿(Thomas Thurston)说,“大家都可以把各种数据作为预测指标。”
事实的确如此:创业投资永远不会成为一项科学。这一行业很大程度上取决于时机和运气。对人的判断同样非常重要。不过,只要我们采取更多措施,而不仅仅是坐在办公室里等着穿套头衫的毛头小子找上门来,肯定会有更加多样的创业者获得风投支持。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14