
P2P理财欺诈乱象不止 大数据防控是否靠谱_数据分析师考试
互联网金融风生水起的同时,风险也在逐渐累积,在传统风控的基础上,利用大数据进行风险评级和风险控制已成为业内的共同趋势。但是大数据技术这种基于历史数据的分析能否帮助我们预知未来,防范风险呢?
近日,多家P2P平台宣布接入大数据反欺诈服务供应商同盾科技的SAAS反欺诈数据库,一时间,大数据反欺诈成为P2P平台风控水平新的提升点。据相关人士介绍,大数据反欺诈的实质是通过对大数据的采集和分析,找出欺诈者留下的蛛丝马迹,从而预防欺诈行为发生。其现实意义在于提升坏人的欺诈成本,在欺诈行为发生之前将其制止。
业内专家表示,互联网的虚拟性,让线上造假的成本和难度远远低于线下。随着诈骗团伙专业性的增强,越来越多的高科技被运用到线上进行诈骗,更加大了P2P平台甄别用户信息的难度,提高平台对网络欺诈防范能力已经刻不容缓。
“虚假借款人是P2P平台主要风险主体之一,而网络反欺诈简单说来就是为了过滤掉这些虚假借款人。这个群体的突出特点就是同时在多个借款平台上发布借款申请,通过提供虚假信息进行诈骗。”一位受访的业内人士称。
据了解,目前已有多家P2P平台引入了反欺诈技术,这在我国征信体系尚不完善的互联网金融环境中具有重要意义。以P2P平台邦帮堂为例,引入大数据反欺诈模型之后,邦帮堂风控系统将与同盾SAAS反欺诈数据库直接进行对接,同盾科技提供丰富的反欺诈资源,帮助邦帮堂在信用评估初期有效地判断借款申请是否属于诈骗,过滤掉不安全信息,帮助其提高审贷效率,降低平台前期的硬件和实施成本。
邦帮堂副总裁王秀萍认为,通过向P2P平台提供虚假信息,骗取钱财的金融诈骗犯罪日益猖獗,给平台和投资人造成巨大经济损失。随着互联网金融市场规模的增长,互联网金融诈骗必将有增无减。所以提高风控实力,是P2P平台必须用心去做的“功课”。同盾科技联合创始人、COO马骏驱表示,“大数据技术需要不断进化,以前我们的数据都是在经济上升周期中积累所得,当经济形势发生变化时,应该作出相应调整。”
除了P2P领域,电商、银行、支付等行业同样需要反诈骗。业内人士认为,未来,反欺诈领域或实现跨行业联防联控。可以通过整合包含互联网金融、电商、银行、支付等众多行业黑名单数据,配合行业领先的数据与行为收集技术,经过多样化的机器学习模型、大数据关联分析和指标计算,以云服务的方式为各行业提供网络反欺诈保护,从而建立适用于全局的关联欺诈信息库,提供更准确、更全面的反欺诈服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22