京公网安备 11010802034615号
经营许可证编号:京B2-20210330
成功数据分析所面临的5项挑战_数据分析师考试
怎样才能使企业升级到一个新的水平,并开始一个大数据发展战略的部署呢?本文将介绍企业成功实现大数据策略所需要克服的5个关键挑战问题:
大数据将增加企业对IT部门的依赖
在过去几年里,IT部门在企业中的重要性越发突显,而在未来几年,我们将看到,随着物联网和工业网络的出现,许多目前未连接的设备将变得数据化,并开始产生大量数据。而对于那些仅仅只开发线下产品,仅仅利用IT进行企业的网站建设的企业来说,这将意味着一项重大的变革。在未来几年,IT部门将成为企业所有业务部门的核心部分。大数据将以不同的工作方式渗透和影响到企业内的所有部门。
所以除了能够访问数据,大数据项目将成为企业不同部门的重要组成部分,因此各个业务部门也将需要他们自己的IT员工。对于多数企业,IT部门将成为企业中的一个更为重要的组成,那些目前仍然只是开发线下产品的公司而言,这无疑是他们将需要克服的一个重大转变。
大数据的商业案例难以从一开始就确定
几乎在任何企业,在一个大数据项目开始部署之前,先建立一个商业案例都是非常重要的。然而,大数据项目所面临的挑战是确定其投资回报率(ROI)是相当困难的,因为大数据项目需要投资新的硬件和软件,并采用一种新的工作方式。在任何行业内地任何企业,大数据带来了不同的可能性,其结果也必然会不同。为了能够确定投资回报率,企业应该启动一个试点项目,其也可以被当作是一次经验的学习,以便能够在以后的大数据项目中提供相关的ROI遵循见解。
因此,企业所需要克服的挑战是,在一个大数据项目完成之前,很难确定其有效的投资回报率的。但是,没有一个明确的投资回报率,又会使得大数据项目的执行变得相当困难。为了克服这一挑战,企业最好从一个小的、定义良好的试点项目开始着手,将该试点项目视为本身不会带来投资回报的项目,但您会从中学到很多关于大数据对于您企业的意义。通过您企业在试点项目中所取得的经验,并吸取相关的教训,进而可以用来更好地确定企业未来大数据项目的ROI。
企业内的数据通常存储在筒仓
为了充分利用大数据,企业需要将所有不同的数据源的数据进行合并。虽然大数据的特性之一便是其庞大的数据量,而其正是来源对对海量数据进行合并的结果。大数据发展的趋势便是成为混合数据。然而,问题在于,如果一家企业内的不同部门分别进行数据收集(毕竟,各部门单独进行数据收集是最有可能做到的)这会造成使企业内的数据难以共享的局面,尽管很可能并不是故意的。以耐克公司为例,该公司曾经在整个企业范围内进行数据储存,从而限制了可以用数据来完成的工作。然后他们去掉了筒仓将所有数据合并到一个中央平台,所有员工均可以基于其职位角色访问。这使耐克保持了创新,进而保持了领先于竞争对手的优势。
除了企业内的数据仓,企业也应该注意外面的世界,并开始思考可以使用的新的数据集。结合开放的社交媒体数据和公共数据可以提供很大的启示和见解。企业在开发一个大型数据策略时,应该开始跳出企业范围内进行思考,不要让并没有自己被限制在企业内的数据。
保证客户的隐私,同时充分利用现有数据
在斯诺登事件之后,隐私泄露的问题似乎已经是过去的事了,但如果企业那个妥善处理他们的数据,这其实也并不构成太大的问题。隐私权仍然是消费者的一个非常重要的权利,而且应该得到保护。企业应努力在寻求利润最大化和客户隐私数据使用之间的平衡。
为了做到这一点,企业应该公开透明的告知他们的客户,他们收集了客户哪些方面的数据,为什么要收集、存储和分析这些数据。另外,企业应该尽可能简单的让客户明白:企业收集和调整了哪些数据,以及数据是如何被使用的。最后,数据的安全性应该是企业的关键,企业应该做些什么才能防止数据泄露。在过去几年,我们已经看到太多的数据泄露对消费者的隐私带来的负面影响。
在保护客户数据的隐私和获得收集分析数据的回报之间取得适当的平衡是困难的,但在长期而言,如果您的企业成功地保护客户的隐私,收集分析数据的回报肯定是可观的。
大数据项目需要文化的转变
在许多企业中,有一些不相信数据的力量的管理者,这阻碍了企业向以数据驱动的信息为中心的企业方面的转型。他们不信任大数据,做决策时宁愿依靠自己的直觉,因此他们不认为企业有必要转向更加以数据为驱动的。事实上,据IBM的调查发现,有三分之一的企业领导者不信任他们收到的数据信息来做出决策。
因此,数据的准确性是非常重要的。这意味着企业需要确保实际收集的数据是正确的,以及分析的算法是正确的,以确保从数据中得出的信息结论是正确的。这需要一种企业文化的转变,其需要能够说服所有的企业领导者相信大数据,并在制定大数据策略时,积极的面对派生信息这一个重大的挑战。为了克服这一挑战,企业应该花费足够的时间和精力来教育员工和经理们如何处理数据和使用数据,以做出正确的决策。这一工作是相当费时的,但却能逐步建立起企业对于大数据的信任。
虽然开发一个大数据策略是困难的,但企业不应该止步。企业应该从或大或小的项目中开始发掘出企业所拥有的数据的价值,并结合企业内数据与其他数据集来分析其中蕴含的信息和见解。对于那些已经成功地实施了大数据战略的企业而言,其过程从来都不是一件容易的事,但其带来的结果绝对是令人印象深刻的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06