
成功数据分析所面临的5项挑战_数据分析师考试
怎样才能使企业升级到一个新的水平,并开始一个大数据发展战略的部署呢?本文将介绍企业成功实现大数据策略所需要克服的5个关键挑战问题:
大数据将增加企业对IT部门的依赖
在过去几年里,IT部门在企业中的重要性越发突显,而在未来几年,我们将看到,随着物联网和工业网络的出现,许多目前未连接的设备将变得数据化,并开始产生大量数据。而对于那些仅仅只开发线下产品,仅仅利用IT进行企业的网站建设的企业来说,这将意味着一项重大的变革。在未来几年,IT部门将成为企业所有业务部门的核心部分。大数据将以不同的工作方式渗透和影响到企业内的所有部门。
所以除了能够访问数据,大数据项目将成为企业不同部门的重要组成部分,因此各个业务部门也将需要他们自己的IT员工。对于多数企业,IT部门将成为企业中的一个更为重要的组成,那些目前仍然只是开发线下产品的公司而言,这无疑是他们将需要克服的一个重大转变。
大数据的商业案例难以从一开始就确定
几乎在任何企业,在一个大数据项目开始部署之前,先建立一个商业案例都是非常重要的。然而,大数据项目所面临的挑战是确定其投资回报率(ROI)是相当困难的,因为大数据项目需要投资新的硬件和软件,并采用一种新的工作方式。在任何行业内地任何企业,大数据带来了不同的可能性,其结果也必然会不同。为了能够确定投资回报率,企业应该启动一个试点项目,其也可以被当作是一次经验的学习,以便能够在以后的大数据项目中提供相关的ROI遵循见解。
因此,企业所需要克服的挑战是,在一个大数据项目完成之前,很难确定其有效的投资回报率的。但是,没有一个明确的投资回报率,又会使得大数据项目的执行变得相当困难。为了克服这一挑战,企业最好从一个小的、定义良好的试点项目开始着手,将该试点项目视为本身不会带来投资回报的项目,但您会从中学到很多关于大数据对于您企业的意义。通过您企业在试点项目中所取得的经验,并吸取相关的教训,进而可以用来更好地确定企业未来大数据项目的ROI。
企业内的数据通常存储在筒仓
为了充分利用大数据,企业需要将所有不同的数据源的数据进行合并。虽然大数据的特性之一便是其庞大的数据量,而其正是来源对对海量数据进行合并的结果。大数据发展的趋势便是成为混合数据。然而,问题在于,如果一家企业内的不同部门分别进行数据收集(毕竟,各部门单独进行数据收集是最有可能做到的)这会造成使企业内的数据难以共享的局面,尽管很可能并不是故意的。以耐克公司为例,该公司曾经在整个企业范围内进行数据储存,从而限制了可以用数据来完成的工作。然后他们去掉了筒仓将所有数据合并到一个中央平台,所有员工均可以基于其职位角色访问。这使耐克保持了创新,进而保持了领先于竞争对手的优势。
除了企业内的数据仓,企业也应该注意外面的世界,并开始思考可以使用的新的数据集。结合开放的社交媒体数据和公共数据可以提供很大的启示和见解。企业在开发一个大型数据策略时,应该开始跳出企业范围内进行思考,不要让并没有自己被限制在企业内的数据。
保证客户的隐私,同时充分利用现有数据
在斯诺登事件之后,隐私泄露的问题似乎已经是过去的事了,但如果企业那个妥善处理他们的数据,这其实也并不构成太大的问题。隐私权仍然是消费者的一个非常重要的权利,而且应该得到保护。企业应努力在寻求利润最大化和客户隐私数据使用之间的平衡。
为了做到这一点,企业应该公开透明的告知他们的客户,他们收集了客户哪些方面的数据,为什么要收集、存储和分析这些数据。另外,企业应该尽可能简单的让客户明白:企业收集和调整了哪些数据,以及数据是如何被使用的。最后,数据的安全性应该是企业的关键,企业应该做些什么才能防止数据泄露。在过去几年,我们已经看到太多的数据泄露对消费者的隐私带来的负面影响。
在保护客户数据的隐私和获得收集分析数据的回报之间取得适当的平衡是困难的,但在长期而言,如果您的企业成功地保护客户的隐私,收集分析数据的回报肯定是可观的。
大数据项目需要文化的转变
在许多企业中,有一些不相信数据的力量的管理者,这阻碍了企业向以数据驱动的信息为中心的企业方面的转型。他们不信任大数据,做决策时宁愿依靠自己的直觉,因此他们不认为企业有必要转向更加以数据为驱动的。事实上,据IBM的调查发现,有三分之一的企业领导者不信任他们收到的数据信息来做出决策。
因此,数据的准确性是非常重要的。这意味着企业需要确保实际收集的数据是正确的,以及分析的算法是正确的,以确保从数据中得出的信息结论是正确的。这需要一种企业文化的转变,其需要能够说服所有的企业领导者相信大数据,并在制定大数据策略时,积极的面对派生信息这一个重大的挑战。为了克服这一挑战,企业应该花费足够的时间和精力来教育员工和经理们如何处理数据和使用数据,以做出正确的决策。这一工作是相当费时的,但却能逐步建立起企业对于大数据的信任。
虽然开发一个大数据策略是困难的,但企业不应该止步。企业应该从或大或小的项目中开始发掘出企业所拥有的数据的价值,并结合企业内数据与其他数据集来分析其中蕴含的信息和见解。对于那些已经成功地实施了大数据战略的企业而言,其过程从来都不是一件容易的事,但其带来的结果绝对是令人印象深刻的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26