
SAS基于失业率的分析预测_数据分析师考试
失业率(UnemploymentRate)是指失业人口占劳动人口的比率(一定时期全部就业人口中有工作意愿而仍未有工作的劳动力数字),旨在衡量闲置中的劳动产能,是反映一个国家或地区失业状况的主要指标。通过对历年各国和地区的失业率数据 行分析,我们可以对全世界在这几十年的经济波动情况有个大致的了解,同时我们对世界几个大国的失业情况进行了模型拟合,最后我们还探究了中国从改革开放到2010年这30年的失业率的波动与通胀率的关系。
PART ONE——聚类分析
代码如下:
libname ep ‘e:\saslx’;
proc import out=ep.saswork
datafile=”e:\saslx\saswork.xls”
dbms=excel replace;
sheet=”sheet1$”;
getnames=yes;
run;
proc print;
id country;
run;
data s1;
input coun$1-10 year91 year92 year93 year94 year95 year96 year97 year98 year99 year00 year01 year02 year03 year04 year05 year06 year07 year08 year09 year10 ;
datalines;
中国 2.3 2.3 2.6 2.8 2.9 3 3.1 3.1 3.1 3.1 3.6 4 4.3 4.2 4.2 4.1 4.0 4.2 4.3 4.1
中国香港 1.8 2 2 1.9 3.2 2.8 2.2 4.7 6.2 4.9 5.1 7.3 7.9 6.8 5.6 4.8 4.0 3.6 5.2 4.3
中国澳门 3 2.2 2.1 2.5 3.6 4.3 3.2 4.6 6.3 6.8 6.4 6.3 6 4.9 4.1 3.8 3.1 3.0 3.6 2.8
澳大利亚 9.6 10.5 10.7 9.5 8.4 8.3 8.4 7.8 7 6.4 6.8 6.4 5.9 5.5 5 4.8 4.4 4.2 5.6 5.2
奥地利 3.5 3.7 4.3 3.6 3.7 4.1 4.2 4.2 3.8 3.6 3.6 4 4.3 4.9 5.2 4.7 4.4 3.8 4.8 4.4
保加利亚 11.1 15.3 21.4 20 15.7 13.5 13.7 12.2 14.1 16.3 19.4 17.6 13.7 12 10.1 9 6.9 5.6 6.8 10.2
加拿大 10.4 11.3 11.2 10.4 9.5 9.6 9.1 8.3 7.6 6.8 7.2 7.7 7.6 7.2 6.8 6.3 6.0 6.1 8.3 8.0
捷克 4.1 2.6 4.3 4.3 4 3.9 4.8 6.5 8.7 8.8 8.1 7.3 7.8 8.3 7.9 7.1 5.3 4.4 6.7 7.3
丹麦 10.6 11.3 12.4 8 7 6.9 6.1 5.5 5.5 4.6 4.8 4.7 5.5 5.6 5 4.1 4.0 3.4 6.0 7.4
芬兰 6.6 11.6 16.2 16.4 15.2 14.4 12.5 11.3 10.1 9.7 9.1 9.1 9 8.8 8.3 7.7 6.8 6.4 8.2 8.4
法国 9 10 11.1 12.3 11.6 12.1 12.3 11.8 10 8.5 7.8 7.9 8.5 8.9 8.9 8.8 8.0 7.4 9.1 9.3
德国 6.6 7.9 9.5 10.3 10.1 8.8 9.8 9.7 8.8 7.9 7.9 8.7 10 11 11.1 10.3 8.6 7.5 7.7 7.1
希腊 7.7 8.7 9.7 9.6 10 10.3 10.3 10.8 11.9 11.2 10.4 9.9 9.3 10.2 9.6 8.8 8.1 7.2 9.5 12.5
匈牙利 8.5 9.8 11.9 10.7 10.2 9.9 8.7 7.8 7 6.4 5.7 5.8 5.7 6.1 7.2 7.5 7.4 7.8 10.0 11.2
冰岛 2.5 4.3 5.3 5.3 4.9 3.7 3.9 2.7 2 2.3 2.3 3.3 3.4 3.1 2.6 2.9 2.3 3.0 7.2 7.6
爱尔兰 14.7 15.1 15.7 14.7 12.2 11.9 10.3 7.8 5.7 4.3 3.7 4.2 4.4 4.4 4.3 4 4.0 5.2 11.7 13.5
以色列 10.6 11.2 10 7.8 6.9 6.7 7.7 8.5 8.9 8.8 9.4 10.3 10.7 10.4 9 8.4 7.3 6.1 7.6 6.6
意大利 10.9 11.4 9.8 10.7 11.3 11.4 11.5 11.7 11.4 10.5 9.5 9 8.7 8 7.7 6.8 6.1 6.7 7.8 8.4
日本 2.1 2.2 2.5 2.9 3.2 3.4 3.4 4.1 4.7 4.7 5 5.4 5.3 4.7 4.4 4.1 3.9 4.0 5.0 5.1
韩国 2.3 2.4 2.8 2.4 2 2 2.6 6.8 6.3 4.4 4 3.3 3.6 3.7 3.7 3.5 3.2 3.2 3.6 3.7
荷兰 7 5.5 6.2 6.8 7.1 6.6 5.5 4.3 3.6 3.1 2.5 3.1 4 5 5.1 4.2 3.5 3.0 3.4 4.5
新西兰 10.3 10.3 9.5 8.1 6.3 6.1 6.6 7.5 7 6.1 5.4 5.3 4.8 4 3.8 3.8 3.7 4.2 6.1 6.5
挪威 5.5 5.9 6 5.4 4.9 4.8 4 3.2 3.2 3.4 3.6 3.9 4.5 4.5 4.6 3.4 2.5 2.6 3.1 3.5
菲律宾 9 8.6 8.9 8.4 8.4 7.4 7.9 9.8 9.8 11.2 11.1 11.4 11.4 11.8 7.8 8 7.3 7.4 7.5 7.3
波兰 11.8 13.6 14 14.4 13.3 12.3 11.2 10.5 13.9 16.1 18.2 19.9 19.6 19 17.7 13.8 9.6 7.1 8.2 9.6
葡萄牙 4.1 4.1 5.4 6.7 7.1 7.2 6.7 4.9 4.4 3.9 4 5 6.3 6.7 7.6 7.7 8.0 7.6 9.5 10.8
罗马尼亚 3 8.2 10.4 8.2 8 6.7 6 6.3 6.8 7.1 6.6 8.4 7 8 7.2 7.3 6.4 5.8 6.9 7.3
俄罗斯联邦 0.1 5.2 5.9 8.1 9.5 9.7 11.8 13.3 12.6 9.8 8.9 7.9 8 7.8 7.2 7.2 6.1 6.3 8.4 7.5
西班牙 16.4 18.4 22.6 24.1 22.9 22.1 20.6 18.6 15.6 13.9 10.6 11.5 11.5 11 9.2 8.5 8.3 11.3 18.0 20.1
土耳其 8.1 8.3 8.8 8.4 7.5 6.5 6.7 6.8 7.7 6.5 8.4 10.3 10.5 10.3 10.3 9.9 10.3 11.0 14.0 11.9
瑞典 3 5.2 8.2 8 7.7 8 8 6.5 5.6 4.7 4 4 4.9 5.5 6 5.4 6.1 6.2 8.3 8.4
泰国 2.7 1.4 1.5 1.3 1.1 1.1 0.9 3.4 3 2.4 2.6 1.8 1.5 1.5 1.4 1.2 1.2 1.2 1.5 1.0
英国 8.4 9.7 10.3 9.6 8.6 8.2 7.1 6.1 6 5.4 4.9 5 4.8 4.7 4.6 5.4 5.3 5.3 7.5 7.8
美国 6.8 7.5 6.9 6.1 5.6 5.4 4.9 4.5 4.2 4 4.8 5.8 6 5.5 5.1 4.6 4.6 5.8 9.3 9.6
委内瑞拉 9.5 7.7 6.7 8.7 10.3 11.8 11.4 11.2 14.5 13.2 12.8 16.2 16.8 13.9 11.4 9.3 7.5 6.9 7.9 8.5
run;
proc cluster data =s1 method=average pseudo;
id coun;
proc tree;
run;
PST2伪t2值,在G=3和G=1处有峰值,由于最佳分类为它上面一种,故表明它支持4分类和2分类。PSF伪F值,在G=2和G=4处较大,也支持前面的结论。
倘若分为4类,则有
第一类:中国、日本、奥地利、韩国、中国香港、中国澳门、冰岛、荷兰、挪威、泰国、捷克
第二类:澳大利亚、英国、丹麦、新西兰、加拿大、匈牙利、葡萄牙、瑞典、美国、罗马尼亚、芬兰、法国、意大利、希腊、德国、以色列、菲律宾、土耳其、俄罗斯联邦、爱尔兰
第三类:保加利亚、波兰、委内瑞拉
第四类:西班牙
失业率数字被视为一个反映整体经济状况的指标,而它又是每个月最先发表的经济数据,所以失业率指标被称为所有经济指标的“皇冠上的明珠”,它是市场上最为敏感的月度经济指标。
从第一类分析出有许多亚洲国家都分为一类,可见地域差异对于失业率还是有影响,也可以推测同一地域的经济状况相似,因此失业率也比较相近;第一类也参杂了少量欧洲国家。
第二类中全是发达国家,各自的所在大洲也不一样,但是,从失业率也可以反映他们的国家经济情况变化在20年来应该是相近的。
第三类是第二类中未提及的欧洲发达国家与南美洲的一个国家合为一类,这一点上是有些奇怪的。
第四类西班牙独自为一类,观察数据发现,它的失业率一直以来居高不下,推测它可能一直都保持着这种水平,即经济也似乎是不会变动太大的。
proc fastclus data =s1 maxclusters=4 out=fcl;
id coun;
proc sort data=fcl out = sortfcl;
by cluster;
proc print data=sortfcl;
run;
用快速聚类法也得到了同样的分类结果,推测针对这些国家,分为4类确实比较适合。
PART TWO——模型拟合
我们想研究各国的失业率符合什么样的模型,从而根据这个模型可以对失业率进行分析和预测,最后,如果几乎所有的国家的失业率都属于同一种模型,那我们就可以推断这是失业率随着年份的一般发展规律。由于国家众多,所以选取我们感兴趣的一些国家来做。
选取中国作为研究对象。
先通过画图看应该用哪种模型来拟合比较好。为了画图方便,把1991年看作是第一年,1992年看作是第二年,依次类推,2010年看作是第二十年。
从图中可以发现图形大致为S型。采用 logistic模型 。
由图中的结果可以看出,模型拟合的很好,可以大致认为中国的失业率符合logistic模型。可能原因是随着90年年以后教育力度的加强,高素质人才愈来愈多,导致失业率不断上升,但是可能某一段时间的退休人数增加,加上国家的行业变得多样化,企业数量增多,对人才的需求大,阻止了失业率的增长速度,但是还不足以抵消。
下面研究澳大利亚的失业率。
很显然,logistic模型不再满足澳大利亚的失业率变化,试用指数模型拟合一下
发现结果还比较让人满意。由于对澳大利亚的国情不是很了解,不知道为什么他们的失业率会逐年下降,不过可以肯定的是,他们的政府起了很大作用。
再分析一下日本
Logistic模型和指数模型多不再满足,用三角函数来拟合
模型的拟合结果还让人满意。据我所知,日本在六七十年代经历了经济的极端繁荣之后就开始走下坡,特别是到了九十年代末二十一世纪初的时候,各行各业失业的情况十分严重,可能这后经过一系列的经济调整,情况有所转变,但是到了08年,受到全球经济危机的冲击,失业率又上升了。
从以上三个实例可以看出,失业率没有符合某一具体模型,而是根据不同国家的不同情况而有所变化。
PART THREE——中国失业率曲线分析
data china;
input y1980-y2010;
datalines;
4.9 3.8 3.2 2.3 1.9 1.8 2 2 2 2.6 2.5 2.3 2.3 2.6 2.8 2.9 3 3.1 3.1 3.1 3.1 3.6 4 4.3 4.2 4.2 4.1 4.0 4.2 4.3 4.1;
proc transpose out=china(rename=(_name_=year col1=rate));
run;
proc gplot;
plot rate*year;
run;
上图所示为中国从改革开放至今(1980年-2010年)各年的失业率。
单从上图曲线来看,可看出1980年的失业率较高,为4.9%,从1980年到1984年,失业率逐年降低,下降的速率也很快;1984年到1988年失业率呈现平稳波动;1988年到1989年间失业率陡增;1990年到2000年失业率呈现平缓上升的趋势,2000年到2003年,失业率上升的速度加快;2003年到2010年失业率保持平稳波动。
一般情况下,失业率下降,代表整体经济健康发展,利于货币升值;失业率上升,便代表经济发展放缓衰退,不利于货币升值。若将失业率配以同期的通胀指标来分析,则可知当时经济发展是否过热,会否构成加息的压力,或是否需要通过减息以刺激经济的发展。
通货膨胀(Inflation)指在纸币流通条件下,因货币供给大于货币实际需求,也即现实购买力大于产出供给,导致货币贬值,而引起的一段时间内物价持续而普遍地上涨现象。
libname mywork ‘e:\sas\sas作业’;
proc import out=rate
datafile=’e:\SAS\通胀率.xls’
dbms=excel replace;
sheet=’sheet1$’;
getnames=yes;
run;
proc gplot;
plot _col1*_col0;
run;
上图所示为改革开放近30年来的通胀率曲线。
下面我们对通胀率和失业率两个图进行对比分析:
1984年以前失业率的降低与通胀率似乎没有多大关系,我认为这主要是改革开放的新政策极大促进了就业。特殊政策的影响太大了。从1984年以后来分析失业率与通胀率的关系比较合理。
从1984年到2000年,通胀率波动很大,失业率也处于一种波动状态,通胀率开始上升的一年内,失业率有略微下降。通货膨胀对刺激就业的作用是短期的,长期来说这种关系并不成立。而从两个图的对比中,我们也会发现,持续的通货膨胀反而导致失业率上升。在经济学中,有这样一个基本原理:社会面临通货膨胀与失业的短期权衡取舍。大多数经济学家认为在货币注入的短期效应会降低失业率。我们结合2000年到2009年这10年的数据来看,可看出政府在权衡取舍中,并没有选择通过发行过多货币来刺激就业,而是选择了维持较低的通胀率,但这同时这就意味着失业情况无法从货币刺激这个方面得到改善。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22