cda

数字化人才认证

首页 > 行业图谱 >

123456789 1/9

【CDA干货】机器学习参数重要性分析:从参数类型到落地实践,优化模型性能的核心指南

【CDA干货】机器学习参数重要性分析:从参数类型到落地实践,优化模型性能的核心指南
2025-10-16
在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这些参数的微小调整都可能显著影响模型的预测精度、泛化能力甚至训练效率。但很多从业者 ...

【CDA干货】神经网络隐藏层层数怎么确定?从原理到实战的完整指南

【CDA干货】神经网络隐藏层层数怎么确定?从原理到实战的完整指南
2025-10-14
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据复杂规律);层数过多,又会导致 “过拟合”(记忆训练噪声)、训练效率低下、梯度消 ...

【CDA干货】机器学习特征重要性分析:原理、实战与业务落地指南

【CDA干货】机器学习特征重要性分析:原理、实战与业务落地指南
2025-10-11
在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模型效率,更能揭示 “哪些因素真正影响目标结果”(如用户流失的核心原因、房价波动的关 ...

【CDA干货】深度学习的核心引擎:损失函数与反向传播的协同原理与实战

【CDA干货】深度学习的核心引擎:损失函数与反向传播的协同原理与实战
2025-10-09
在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 “量化错误”(计算预测值与真实值的差距),反向传播负责 “定位错误来源”(沿着神 ...

【CDA干货】XGBoost 决策树:原理、优化与工业级实战指南

【CDA干货】XGBoost 决策树:原理、优化与工业级实战指南
2025-09-29
XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型,但传统决策树存在 “易过拟合、精度有限、对噪声敏感” 等缺陷。而 XGBoost(Extreme ...

【CDA干货】深度神经网络神经元个数确定指南:从原理到实战的科学路径

【CDA干货】深度神经网络神经元个数确定指南:从原理到实战的科学路径
2025-09-25
深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关键超参数之一 —— 过少的神经元会导致模型 “欠拟合”(无法学习到数据的复杂规律), ...

【CDA干货】训练与验证损失骤升:机器学习训练中的异常诊断与解决方案

【CDA干货】训练与验证损失骤升:机器学习训练中的异常诊断与解决方案
2025-09-19
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指标 —— 理想情况下,训练损失与验证损失会随迭代轮次(Epoch)稳步下降,最终趋于平 ...

【CDA干货】机器学习解决实际问题的核心关键:从业务到落地的全流程解析

【CDA干货】机器学习解决实际问题的核心关键:从业务到落地的全流程解析
2025-09-09
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于推荐系统、金融风控、工业质检、医疗诊断等领域。然而,并非所有机器学习项目都能实现 ...

【CDA干货】随机森林算法的核心特点:原理、优势与应用解析

【CDA干货】随机森林算法的核心特点:原理、优势与应用解析
2025-09-05
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning)中 Bagging 算法的经典代表,凭借对单决策树缺陷的优化,成为分类、回归任务中的 “万 ...

【CDA干货】密集连接卷积神经网络(DenseNet):最后归一化的技术价值与实践

【CDA干货】密集连接卷积神经网络(DenseNet):最后归一化的技术价值与实践
2025-09-04
在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连接卷积神经网络(DenseNet),通过 “密集块(Dense Block)” 中相邻层的全连接设计 ...

【CDA干货】机器学习中的参数优化:以预测结果为核心的闭环调优路径

【CDA干货】机器学习中的参数优化:以预测结果为核心的闭环调优路径
2025-08-29
机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关键桥梁 —— 模型参数的合理性直接决定预测精度,而预测结果则是检验参数有效性的唯一 ...

【CDA干货】神经网络隐藏层神经元个数的确定方法与实践

【CDA干货】神经网络隐藏层神经元个数的确定方法与实践
2025-08-25
神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛化能力的关键环节。本文从神经网络的基础结构出发,系统梳理隐藏层神经元个数确定的核 ...

【CDA干货】KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南

【CDA干货】KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南
2025-08-20
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评估体系中,KS 曲线(Kolmogorov-Smirnov Curve)是 “核心标尺” 之一。它通过对比 “ ...

【CDA干货】反向传播神经网络:突破传统算法瓶颈的革命性力量

【CDA干货】反向传播神经网络:突破传统算法瓶颈的革命性力量
2025-08-07
反向传播神经网络:突破传统算法瓶颈的革命性力量​ 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域。然而,随着数据复杂度的激增和应用场景的深化,传统算法在非线性关系建模、特征提取 ...

【CDA干货】解析 LSTM 训练后输出不确定:成因与破解之道

【CDA干货】解析 LSTM 训练后输出不确定:成因与破解之道
2025-07-29
解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系的独特能力,成为自然语言处理、时间序列预测、语音识别等任务的核心工具。然而,在实 ...

CDA 备考干货:Python 在数据分析中的核心应用与实战技巧

CDA 备考干货:Python 在数据分析中的核心应用与实战技巧
2025-07-08
CDA 备考干货:Python 在数据分析中的核心应用与实战技巧​ ​ 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心工具,贯穿 LevelⅠ 到 LevelⅢ 的全级别考核内容。无论是基础的数据清洗、可视化,还 ...

CDA数据分析师就业班3月29日开班,仅剩1个名额

CDA数据分析师就业班3月29日开班,仅剩1个名额
2025-03-28
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》,预测了未来五年内增长最快的十大岗位,其中就包括了数据分析师和科学家、数字化转型人 ...

解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭!

解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭!
2025-03-19
解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。你是否渴望抓住这一机遇,踏入高收入的数据分析师行业,实现职业逆袭?C ...
随机森林 vs XGBoost vs 决策树:算法选择中的
2025-03-03
当你在凌晨三点盯着电脑屏幕,面对满屏的模型评估指标时,是否也曾被这三个名字折磨得头晕目眩?在机器学习的世界里,决策树、随机森林和XGBoost就像武侠小说里的三大门派,各自拥有独特的武学秘籍。今天我们就来揭 ...

【干货】半监督学习(下)Label Spreading

【干货】半监督学习(下)Label Spreading
2025-02-05
当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督学习有Label Propagation和Label Spreading两种。他们的主要区别是第二种方法带有正则 ...
123456789 1/9

OK
客服在线
立即咨询