cda

数字化人才认证

首页 > 行业图谱 >

12345678 1/8

【CDA干货】机器学习中的参数优化:以预测结果为核心的闭环调优路径

【CDA干货】机器学习中的参数优化:以预测结果为核心的闭环调优路径
2025-08-29
机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关键桥梁 —— 模型参数的合理性直接决定预测精度,而预测结果则是检验参数有效性的唯一 ...

【CDA干货】神经网络隐藏层神经元个数的确定方法与实践

【CDA干货】神经网络隐藏层神经元个数的确定方法与实践
2025-08-25
神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛化能力的关键环节。本文从神经网络的基础结构出发,系统梳理隐藏层神经元个数确定的核 ...

【CDA干货】KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南

【CDA干货】KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南
2025-08-20
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评估体系中,KS 曲线(Kolmogorov-Smirnov Curve)是 “核心标尺” 之一。它通过对比 “ ...

【CDA干货】反向传播神经网络:突破传统算法瓶颈的革命性力量

【CDA干货】反向传播神经网络:突破传统算法瓶颈的革命性力量
2025-08-07
反向传播神经网络:突破传统算法瓶颈的革命性力量​ 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域。然而,随着数据复杂度的激增和应用场景的深化,传统算法在非线性关系建模、特征提取 ...

【CDA干货】解析 LSTM 训练后输出不确定:成因与破解之道

【CDA干货】解析 LSTM 训练后输出不确定:成因与破解之道
2025-07-29
解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系的独特能力,成为自然语言处理、时间序列预测、语音识别等任务的核心工具。然而,在实 ...

CDA 备考干货:Python 在数据分析中的核心应用与实战技巧

CDA 备考干货:Python 在数据分析中的核心应用与实战技巧
2025-07-08
CDA 备考干货:Python 在数据分析中的核心应用与实战技巧​ ​ 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心工具,贯穿 LevelⅠ 到 LevelⅢ 的全级别考核内容。无论是基础的数据清洗、可视化,还 ...

CDA数据分析师就业班3月29日开班,仅剩1个名额

CDA数据分析师就业班3月29日开班,仅剩1个名额
2025-03-28
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》,预测了未来五年内增长最快的十大岗位,其中就包括了数据分析师和科学家、数字化转型人 ...

解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭!

解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭!
2025-03-19
解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。你是否渴望抓住这一机遇,踏入高收入的数据分析师行业,实现职业逆袭?C ...
随机森林 vs XGBoost vs 决策树:算法选择中的
2025-03-03
当你在凌晨三点盯着电脑屏幕,面对满屏的模型评估指标时,是否也曾被这三个名字折磨得头晕目眩?在机器学习的世界里,决策树、随机森林和XGBoost就像武侠小说里的三大门派,各自拥有独特的武学秘籍。今天我们就来揭 ...

【干货】半监督学习(下)Label Spreading

【干货】半监督学习(下)Label Spreading
2025-02-05
当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督学习有Label Propagation和Label Spreading两种。他们的主要区别是第二种方法带有正则 ...

【干货】用半监督学习方法处理标签(上)Label Propagation

【干货】用半监督学习方法处理标签(上)Label Propagation
2025-02-04
考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额外的未标记数据,更好地捕捉数据分布的潜在形状,并在新样本上的泛化能力更强。当我们 ...

【干货】大厂数据分析师面试,最常犯的2个技术错误

【干货】大厂数据分析师面试,最常犯的2个技术错误
2025-01-29
01专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中国人民银行结算中心数据分析内训、华夏银行数据分析内训、苏州银行总行数据挖掘内训项 ...
模型过拟合的优化解决方案
2024-12-06
理解模型过拟合 模型过拟合是指机器学习模型在训练数据上表现出色,但在新数据或未见过的数据上表现不佳的现象。这通常是因为模型过于复杂,捕捉到了训练数据中的噪声而非内在模式,导致泛化能力下降。 简化模型复杂 ...
数据分析模型的错误分析与修正
2024-12-06
数据分析模型的构建是一个错综复杂的过程,涉及数据处理、模型训练、误差分析和优化等多个关键环节。在这篇文章中,我们将深入探讨常见的问题及解决方案,以及如何通过错误分析不断完善模型。 数据问题 数据在数据分 ...
图像识别模型的优化最佳实践
2024-12-06
在机器学习中,特征重要性可视化是一项关键技术,用于评估和展示特征对模型预测结果的影响程度。通过合理利用这些技巧和方法,研究人员和工程师能够更好地优化图像识别模型,提高其性能和准确性。 条形图与水平条形 ...
无序多分类logistic回归中的特征选择方法
2024-12-06
在无序多分类Logistic回归中,特征选择是至关重要的一步,直接影响模型性能和解释能力。选择合适的特征可以使模型更加简洁高效,提高预测准确性,从而为数据分析师带来更好的工作成果和职业发展机会。下面将介绍几种 ...
交叉熵损失函数的梯度下降算法
2024-12-05
在机器学习和深度学习领域,交叉熵损失函数扮演着关键角色,特别是在分类问题中。它不仅被广泛运用于神经网络的训练过程,而且通过衡量模型预测的概率分布与实际标签分布之间的差异,指导着模型参数的优化路径。 交 ...
欠拟合的实际案例分享
2024-12-05
欠拟合是机器学习中常见的问题,指模型无法在训练和测试数据上表现良好,往往由于模型过于简单而无法捕捉数据中的复杂关系。以下将通过实际案例分享来深入探讨欠拟合问题及其影响。 遥感数据回归树模型 研究人员进行 ...
每天一个数据分析题(五百零八)- 机器学习模型
2024-08-29
逻辑回归和支持向量机(SVM)都是经典的机器学习模型,逻辑回归和SVM的联系与区别,不正确的是? A.        二者都可以处理分类问题 B.        二者都可以增加不同的正则 ...
数据分析:从数据中提取有价值的见解
2024-08-22
数据分析是一项需要深入理解和精确操作的过程,它通过多种方法和工具,帮助我们从数据中提取有价值的见解。在现代社会,数据无处不在,而如何从这些海量数据中提取有用信息,成了每个行业和个人必须掌握的技能。 ...
12345678 1/8

OK
客服在线
立即咨询