cda

数字化人才认证

首页 > 行业图谱 >

【CDA干货】左尾数据的正态化处理:从识别到落地的完整指南

【CDA干货】左尾数据的正态化处理:从识别到落地的完整指南
2025-10-28
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的有效性、模型的预测精度才能得到保障。但实际业务中,大量数据呈现 “左偏分布”(左 ...

【CDA干货】JMP 绘制箱线图:从数据分布可视化到深度统计分析

【CDA干货】JMP 绘制箱线图:从数据分布可视化到深度统计分析
2025-10-28
箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分析、市场调研等领域的 “基础分析工具”。而 JMP 作为专业的统计分析软件,不仅能快速 ...

CDA 数据分析师:假设检验实战指南 —— 用数据验证业务假设的科学方法

CDA 数据分析师:假设检验实战指南 —— 用数据验证业务假设的科学方法
2025-10-27
对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转化为可验证的统计假设,通过数据排除随机波动,得出可靠结论” 的核心技能。例如,当业 ...

【CDA干货】Python 实践:神经网络与卡尔曼滤波融合系统的构建与应用

【CDA干货】Python 实践:神经网络与卡尔曼滤波融合系统的构建与应用
2025-10-23
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、TensorFlow)及数据处理工具,成为实现融合系统的理想选择。本文将以 “无人机姿态估计 ...

CDA 数据分析师:数据清洗实战指南 —— 筑牢数据分析的 “质量防线”

CDA 数据分析师:数据清洗实战指南 —— 筑牢数据分析的 “质量防线”
2025-10-23
在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技巧(分析模型),也无法烹制出符合要求的佳肴(可靠结论)。据行业调研显示,CDA(Cert ...

CDA 数据分析师:数据整合实战指南 —— 打破数据孤岛,构建业务全景视图

CDA 数据分析师:数据整合实战指南 —— 打破数据孤岛,构建业务全景视图
2025-10-22
在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散在交易平台、支付系统、物流后台,这些碎片化数据无法直接支撑 “用户生命周期价值分析 ...

【CDA干货】特征单变量筛选:从原理到实战,高效精简特征的核心方法

【CDA干货】特征单变量筛选:从原理到实战,高效精简特征的核心方法
2025-10-21
在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特征(如 “用户 ID”“无效时间戳”),既能降低后续建模的计算成本(如减少 50% 特征可 ...

CDA 数据分析师:数据读取实战指南 —— 筑牢数据分析的 “第一关”

CDA 数据分析师:数据读取实战指南 —— 筑牢数据分析的 “第一关”
2025-10-21
在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Certified Data Analyst)数据分析师而言,数据读取是 “分析质量把控的第一关”:若读取 ...

【CDA干货】数据清洗如何守住真实性?从方法到落地的保真指南

【CDA干货】数据清洗如何守住真实性?从方法到落地的保真指南
2025-10-17
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含义。现实中,很多数据清洗操作却走向 “失真陷阱”:比如为了 “数据整齐” 删除真实的 ...

【CDA干货】透视表备注添加完全指南:从基础批注到动态更新

【CDA干货】透视表备注添加完全指南:从基础批注到动态更新
2025-10-17
在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务逻辑的说明。例如销售报表中 “某区域销售额骤降 30%”“某产品退货率异常” 等关键信 ...

CDA 数据分析师:以量化策略分析框架为刃,破解企业决策的 “数据密码”

CDA 数据分析师:以量化策略分析框架为刃,破解企业决策的 “数据密码”
2025-10-17
在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍板” 做促销可能导致成本失控,零售靠 “店长经验” 备货可能造成库存积压。而量化策 ...

【CDA干货】鸢尾花识别案例:一文读懂特征值与目标值的核心定义与应用

【CDA干货】鸢尾花识别案例:一文读懂特征值与目标值的核心定义与应用
2025-10-15
在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适中,包含了植物学中可量化的形态特征,以及明确的品种分类目标,几乎所有初学者的第一 ...

数据分析师必备技能体系:从工具到思维,构建数据驱动的核心竞争力

数据分析师必备技能体系:从工具到思维,构建数据驱动的核心竞争力
2025-10-14
在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分析结果转化为业务决策。但成为一名合格的数据分析师,绝非 “会用 Excel 做表”“会写 ...

CDA 数据分析师:以数据仓库体系为基,以 ETL 为刃,筑牢数据驱动的 “数据底座”

CDA 数据分析师:以数据仓库体系为基,以 ETL 为刃,筑牢数据驱动的 “数据底座”
2025-10-13
在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易系统、支付平台、物流系统里 —— 这些碎片化的数据无法直接支撑深度分析(如用户生命 ...

【CDA干货】序列模式挖掘:解码用户行为逻辑,驱动业务增长的核心技术

【CDA干货】序列模式挖掘:解码用户行为逻辑,驱动业务增长的核心技术
2025-10-11
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银行 APP 的 “登录→查询余额→转账”—— 都构成了带有时间顺序的 “行为序列”。这些 ...

【CDA干货】正交试验无显著结论?原因、排查与优化策略:让 “无结果” 成为有效指导

【CDA干货】正交试验无显著结论?原因、排查与优化策略:让 “无结果” 成为有效指导
2025-10-10
在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为筛选关键影响因素、优化工艺参数的核心工具。但实际操作中,常出现 “试验结束后,通过 ...

CDA 数据分析师:穿透数据治理体系,成为数据有序运转的 “核心引擎”

CDA 数据分析师:穿透数据治理体系,成为数据有序运转的 “核心引擎”
2025-10-10
在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口径不一(如 “GMV” 有 3 种统计方式)、敏感数据泄露风险频发、核心数据质量差(缺失 ...

【CDA干货】深度学习的核心引擎:损失函数与反向传播的协同原理与实战

【CDA干货】深度学习的核心引擎:损失函数与反向传播的协同原理与实战
2025-10-09
在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 “量化错误”(计算预测值与真实值的差距),反向传播负责 “定位错误来源”(沿着神 ...

CDA 数据分析师:用效应分解法,剖开时间序列的 “增长密码”

CDA 数据分析师:用效应分解法,剖开时间序列的 “增长密码”
2025-10-09
在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还是 “双 11 促销拉动”,或是 “新用户结构优化带来的增量”?若仅看时间序列的表面变 ...

【CDA干货】Pandas 选取特定值所在行:6 类核心方法与实战指南

【CDA干货】Pandas 选取特定值所在行:6 类核心方法与实战指南
2025-09-30
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之一 —— 无论是筛选 “性别为男的用户”“销售额超过 1000 的订单”,还是 “包含‘北 ...

OK
客服在线
立即咨询