cda

数字化人才认证

首页 > 行业图谱 >

【CDA干货】数据库历史数据分析全流程指南:从数据到决策

【CDA干货】数据库历史数据分析全流程指南:从数据到决策
2026-01-08
数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度信息。通过科学分析这些历史数据,既能复盘过往业务表现、定位问题根源,也能挖掘潜在 ...

【CDA干货】电商公司数据分析师必备技能全解析

【CDA干货】电商公司数据分析师必备技能全解析
2026-01-08
在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的“导航员”——他们通过挖掘订单、用户、商品、运营活动等数据中的规律,为GMV提升、 ...

【CDA干货】神经网络训练误差突然增大?原因、排查与解决方案全解析

【CDA干货】神经网络训练误差突然增大?原因、排查与解决方案全解析
2026-01-05
在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在某一轮骤升,甚至出现NaN(非数字)或无穷大的情况。这种现象不仅会中断训练进程,更 ...

CDA数据分析师实战核心:数据清洗的价值、流程与落地技巧

CDA数据分析师实战核心:数据清洗的价值、流程与落地技巧
2026-01-05
在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题,这些“带病数据”会直接导致分析结论失真、建模效果失效,甚至误导业务决策。CDA(Cer ...

【CDA干货】深度解析用户行为数据价值:从挖掘到落地的全链路指南

【CDA干货】深度解析用户行为数据价值:从挖掘到落地的全链路指南
2026-01-04
在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、复购行为,每一个动作背后都蕴藏着关于用户需求、偏好与痛点的关键信息。用户行为数据 ...

【CDA干货】数据稳定性评估全指南:指标、方法与实操价值

【CDA干货】数据稳定性评估全指南:指标、方法与实操价值
2026-01-04
在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有规律,为预测、优化等决策提供坚实支撑;而不稳定的数据往往夹杂着随机波动、异常干扰 ...

CDA数据分析师核心能力:数据读取的方法、要点与实战应用

CDA数据分析师核心能力:数据读取的方法、要点与实战应用
2026-01-04
在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获取数据原料”,那么数据读取就是“打开原料仓库”的核心动作——只有精准、高效地读取 ...

CDA数据分析师实战核心:数据采集方法全解析与落地应用

CDA数据分析师实战核心:数据采集方法全解析与落地应用
2025-12-31
对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的“第一站”,直接决定了数据的质量、完整性与可用性。在数字化时代,数据来源日益多元 ...

CDA数据分析师实战指南:量化策略分析全流程拆解与落地

CDA数据分析师实战指南:量化策略分析全流程拆解与落地
2025-12-30
在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策效率、挖掘核心价值的关键工具。CDA(Certified Data Analyst)数据分析师作为量化策 ...

【CDA干货】一文读懂:衡量数据周期性的核心指标与应用方法

【CDA干货】一文读懂:衡量数据周期性的核心指标与应用方法
2025-12-29
在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象、电商等多个领域。例如,电商平台的月度销售额会随节假日呈现周期性波动,气象数据中 ...

CDA数据分析师实战:量化策略分析框架的构建与落地

CDA数据分析师实战:量化策略分析框架的构建与落地
2025-12-29
在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analyst)数据分析师作为量化策略的核心构建者与执行者,其核心能力不仅在于数据处理与建模 ...

【CDA干货】一文读懂箱线图上下限:定义、计算方法与实战要点

【CDA干货】一文读懂箱线图上下限:定义、计算方法与实战要点
2025-12-25
箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用于数据分析、质量控制、科学研究等领域。而箱线图的“上下限”(也常被称为须线端点) ...

【CDA干货】Power BI建模数据预测全指南:从基础搭建到实战落地

【CDA干货】Power BI建模数据预测全指南:从基础搭建到实战落地
2025-12-25
在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势,都能为业务规划提供关键支撑。Power BI作为主流的商业智能工具,不仅具备强大的数据 ...

CDA数据分析师:串联数据仓库与ETL,构建高质量数据价值底座

CDA数据分析师:串联数据仓库与ETL,构建高质量数据价值底座
2025-12-24
在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data Analyst)数据分析师而言,日常工作中频繁面临“数据分散杂乱”“数据质量堪忧”“数据 ...

【CDA干货】Power BI矩阵动态计算平均值全指南:从入门到实战

【CDA干货】Power BI矩阵动态计算平均值全指南:从入门到实战
2025-12-23
在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计算平均单价、按时间维度统计平均销售额,还是基于筛选条件实时更新平均值,都需要精准 ...

CDA数据分析师:以数据建模为翼,实现从数据解读到业务赋能的跃迁

CDA数据分析师:以数据建模为翼,实现从数据解读到业务赋能的跃迁
2025-12-23
在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转向“通过数据建模挖掘数据深层价值,支撑精准业务决策”。数据建模作为CDA分析师的核心 ...

CDA数据分析师:以数据分类为基,筑牢数据治理与价值挖掘根基

CDA数据分析师:以数据分类为基,筑牢数据治理与价值挖掘根基
2025-12-22
在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分析师在工作中陷入“数据找不准、用不顺、管不好”的困境:想做用户画像却找不到完整的 ...

【CDA干货】Tableau驱动同比环比分析:让数据趋势洞察更高效、决策更精准

【CDA干货】Tableau驱动同比环比分析:让数据趋势洞察更高效、决策更精准
2025-12-19
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响,看清业务长期增长态势;环比(与相邻周期对比)能快速捕捉短期变化,及时发现异常波 ...

CDA数据分析师:深耕数据治理体系,激活数据资产核心价值

CDA数据分析师:深耕数据治理体系,激活数据资产核心价值
2025-12-19
在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全生命周期高质量流转的核心框架,成为企业实现数据资产化的必经之路。然而,不少企业搭 ...

【CDA干货】超小数据集训练Loss的极限探索:非过拟合前提下的边界与突破

【CDA干货】超小数据集训练Loss的极限探索:非过拟合前提下的边界与突破
2025-12-17
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、工业场景的故障样本、科研中的初期实验数据等,都可能受限于采集成本或样本稀缺性,只 ...

OK
客服在线
立即咨询