cda

数字化人才认证

首页 > 行业图谱 >

【CDA干货】SPSS 编码状态区域中 Unicode 的功能与价值解析

【CDA干货】SPSS 编码状态区域中 Unicode 的功能与价值解析
2025-09-09
SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案)的数据分析工作中,编码状态区域是保障数据格式正确性的关键模块,而 Unicode 作为该 ...

【CDA干货】R 语言:数据科学与科研领域的核心工具及优势解析

【CDA干货】R 语言:数据科学与科研领域的核心工具及优势解析
2025-09-08
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T 检验分析)、数据分析师挖掘商业规律,还是学生学习统计方法,都需要一款兼具 “专业性 ...

【CDA干货】T 检验在假设检验中的应用与实践

【CDA干货】T 检验在假设检验中的应用与实践
2025-09-08
T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是偶然波动还是来自总体的真实差异”。例如,一种新降压药能否真正降低患者血压?两种教 ...

【CDA干货】随机森林算法的核心特点:原理、优势与应用解析

【CDA干货】随机森林算法的核心特点:原理、优势与应用解析
2025-09-05
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning)中 Bagging 算法的经典代表,凭借对单决策树缺陷的优化,成为分类、回归任务中的 “万 ...

【CDA干货】Excel 区域名定义:从基础到进阶的高效应用指南

【CDA干货】Excel 区域名定义:从基础到进阶的高效应用指南
2025-09-05
Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错,还会让公式可读性大幅降低。而区域名定义通过给特定单元格区域赋予 “有意义的名称”( ...

【CDA干货】SQL 日期截取:从基础方法到业务实战的全维度解析

【CDA干货】SQL 日期截取:从基础方法到业务实战的全维度解析
2025-09-04
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核心纽带 —— 无论是统计月度销售额、筛选季度活跃用户,还是清洗格式混乱的时间戳,都 ...

【CDA干货】密集连接卷积神经网络(DenseNet):最后归一化的技术价值与实践

【CDA干货】密集连接卷积神经网络(DenseNet):最后归一化的技术价值与实践
2025-09-04
在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连接卷积神经网络(DenseNet),通过 “密集块(Dense Block)” 中相邻层的全连接设计 ...

【CDA干货】K-Means 聚类:无监督学习中数据分群的核心算法

【CDA干货】K-Means 聚类:无监督学习中数据分群的核心算法
2025-09-03
K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图像像素信息)时,如何快速发现数据内在的分组规律?K-Means 聚类算法正是解决这一问题 ...

【CDA干货】特征值、特征向量与主成分:数据降维背后的线性代数逻辑

【CDA干货】特征值、特征向量与主成分:数据降维背后的线性代数逻辑
2025-09-03
特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的核心手段 —— 当我们面对包含数十甚至数百个特征的数据集时,如何剔除冗余信息、保留 ...

【CDA干货】解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心

【CDA干货】解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心
2025-09-02
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算” 与 “参数更新” 的关键桥梁。它不仅负责触发梯度的反向传播计算,在分布式训练场 ...

【CDA干货】K-S 图的横轴设计

【CDA干货】K-S 图的横轴设计
2025-09-02
要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴的定义逻辑与分布检验的需求来分析。以下从 K-S 图的本质、横轴设计原则及实际应用场 ...

【CDA干货】Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额

【CDA干货】Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额
2025-09-01
Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 —— 例如销售业务中,需根据每月实际收入金额及对应业务线的税金占比,动态计算累计 ...

【CDA干货】巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践

【CDA干货】巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践
2025-09-01
巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信息,包括租客 ID(tenant_id)、房源 ID(house_id)、租赁开始时间(rent_start)、 ...

【CDA干货】数据清洗工具全景指南:从入门到进阶的实操路径

【CDA干货】数据清洗工具全景指南:从入门到进阶的实操路径
2025-08-29
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道关卡”—— 据 Gartner 统计,数据分析师约 60% 的时间消耗在清洗脏数据(如缺失值、异 ...

【CDA干货】机器学习中的参数优化:以预测结果为核心的闭环调优路径

【CDA干货】机器学习中的参数优化:以预测结果为核心的闭环调优路径
2025-08-29
机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关键桥梁 —— 模型参数的合理性直接决定预测精度,而预测结果则是检验参数有效性的唯一 ...

【CDA干货】PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南

【CDA干货】PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南
2025-08-28
PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量产品长线生命力的经典指标,但真正能反映游戏 “实时热度峰值” 与 “服务承载压力” ...

【CDA干货】Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策

【CDA干货】Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策
2025-08-28
Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 —— 无论是电商的客户分层、零售的商品分类,还是教育机构的学员画像构建,都需要通 ...

【CDA干货】ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践

【CDA干货】ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践
2025-08-27
ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务场景中出现多维度查询需求(如按用户 ID、时间范围、状态等同时检索数据)时,单次创建 ...

【CDA干货】Power BI 去重函数:数据清洗与精准分析的核心工具

【CDA干货】Power BI 去重函数:数据清洗与精准分析的核心工具
2025-08-27
Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主流的商业智能工具,其内置的去重函数是解决数据重复问题、保障数据准确性的关键手段。 ...

【CDA干货】t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器

【CDA干货】t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器
2025-08-26
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药、两种生产工艺的产品合格率是否有区别、同一群体干预前后的指标是否变化。而 t 检验 ...

OK
客服在线
立即咨询